This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1065

2005 Colombia Team Selection Test, 3

Let $A_1A_2A_3\ldots A_n$ be a regular $n$-gon. Let $B_1$ and $B_{n-1}$ be the midpoints of its sides $A_1A_2$ and $A_{n-1}A_n$. Also, for every $i\in\left\{2,3,4,\ldots ,n-2\right\}$. Let $S$ be the point of intersection of the lines $A_1A_{i+1}$ and $A_nA_i$, and let $B_i$ be the point of intersection of the angle bisector bisector of the angle $\measuredangle A_iSA_{i+1}$ with the segment $A_iA_{i+1}$. Prove that $\sum_{i=1}^{n-1} \measuredangle A_1B_iA_n=180^{\circ}$. [i]Proposed by Dusan Dukic, Serbia and Montenegro[/i]

2014 Oral Moscow Geometry Olympiad, 3

The bisectors $AA_1$ and $CC_1$ of triangle $ABC$ intersect at point $I$. The circumscribed circles of triangles $AIC_1$ and $CIA_1$ intersect the arcs $AC$ and $BC$ (not containing points $B$ and $A$ respectively) of the circumscribed circle of triangle $ABC$ at points $C_2$ and $A_2$, respectively. Prove that lines $A_1A_2$ and $C_1C_2$ intersect on the circumscribed circle of triangle $ABC$.

2021 Iran Team Selection Test, 5

Point $X$ is chosen inside the non trapezoid quadrilateral $ABCD$ such that $\angle AXD +\angle BXC=180$. Suppose the angle bisector of $\angle ABX$ meets the $D$-altitude of triangle $ADX$ in $K$, and the angle bisector of $\angle DCX$ meets the $A$-altitude of triangle $ADX$ in $L$.We know $BK \perp CX$ and $CL \perp BX$. If the circumcenter of $ADX$ is on the line $KL$ prove that $KL \perp AD$. Proposed by [i]Alireza Dadgarnia[/i]

2016 ELMO Problems, 6

Elmo is now learning olympiad geometry. In triangle $ABC$ with $AB\neq AC$, let its incircle be tangent to sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. The internal angle bisector of $\angle BAC$ intersects lines $DE$ and $DF$ at $X$ and $Y$, respectively. Let $S$ and $T$ be distinct points on side $BC$ such that $\angle XSY=\angle XTY=90^\circ$. Finally, let $\gamma$ be the circumcircle of $\triangle AST$. (a) Help Elmo show that $\gamma$ is tangent to the circumcircle of $\triangle ABC$. (b) Help Elmo show that $\gamma$ is tangent to the incircle of $\triangle ABC$. [i]James Lin[/i]

2006 Singapore Senior Math Olympiad, 3

Two circles are tangent to each other internally at a point $T$. Let the chord $AB$ of the larger circle be tangent to the smaller circle at a point $P$. Prove that the line TP bisects $\angle ATB$.

2021 Yasinsky Geometry Olympiad, 4

Let $BF$ and $CN$ be the altitudes of the acute triangle $ABC$. Bisectors the angles $ACN$ and $ABF$ intersect at the point $T$. Find the radius of the circle circumscribed around the triangle $FTN$, if it is known that $BC = a$. (Grigory Filippovsky)

2006 Estonia National Olympiad, 3

Let $AG, CH$ be the angle bisectors of a triangle $ABC$. It is known that one of the intersections of the circles of triangles $ABG$ and $ACH$ lies on the side $BC$. Prove that the angle $BAC$ is $60 ^o$

2018 CMIMC Geometry, 2

Let $ABCD$ be a square of side length $1$, and let $P$ be a variable point on $\overline{CD}$. Denote by $Q$ the intersection point of the angle bisector of $\angle APB$ with $\overline{AB}$. The set of possible locations for $Q$ as $P$ varies along $\overline{CD}$ is a line segment; what is the length of this segment?

2017 Regional Olympiad of Mexico Northeast, 2

Let $ABC$ be a triangle and let $N$ and $M$ be the midpoints of $AB$ and $CA$, respectively. Let $H$ be the foot of altitude from $A$. The circumcircle of $ABH$ intersects $MN$ at $P$, with $P$ and $M$ on the same side relative to $N$, and the circumcircle of $ACH$ intersects $MN$ at $Q$, with $Q$ and $N$ on the same side relative to $M$. $BP$ and $CQ$ intersect at $X$. Prove that $AX$ is the angle bisector of $\angle CAB$.

1984 Tournament Of Towns, (O76) T3

In $\vartriangle ABC, \angle ABC = \angle ACB = 40^o$ . $BD$ bisects $\angle ABC$ , with $D$ located on $AC$. Prove that $BD + DA = BC$.

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

2001 IMO, 5

Let $ABC$ be a triangle with $\angle BAC = 60^{\circ}$. Let $AP$ bisect $\angle BAC$ and let $BQ$ bisect $\angle ABC$, with $P$ on $BC$ and $Q$ on $AC$. If $AB + BP = AQ + QB$, what are the angles of the triangle?

2021 New Zealand MO, 2

Let $ABCD$ be a trapezium such that $AB\parallel CD$. Let $E$ be the intersection of diagonals $AC$ and $BD$. Suppose that $AB = BE$ and $AC = DE$. Prove that the internal angle bisector of $\angle BAC$ is perpendicular to $AD$.

2024 Yasinsky Geometry Olympiad, 5

Let \( AL \) be the bisector of triangle \( ABC \), \( O \) the center of its circumcircle, and \( D \) and \( E \) the midpoints of \( BL \) and \( CL \), respectively. Points \( P \) and \( Q \) are chosen on segments \( AD \) and \( AE \) such that \( APLQ \) is a parallelogram. Prove that \( PQ \perp AO \). [i]Proposed by Mykhailo Plotnikov[/i]

2021 Oral Moscow Geometry Olympiad, 6

Point $M$ is a midpoint of side $BC$ of a triangle $ABC$ and $H$ is the orthocenter of $ABC$. $MH$ intersects the $A$-angle bisector at $Q$. Points $X$ and $Y$ are the projections of $Q$ on sides $AB$ and $AC$. Prove that $XY$ passes through $H$.

2000 China Team Selection Test, 1

Let $ABC$ be a triangle such that $AB = AC$. Let $D,E$ be points on $AB,AC$ respectively such that $DE = AC$. Let $DE$ meet the circumcircle of triangle $ABC$ at point $T$. Let $P$ be a point on $AT$. Prove that $PD + PE = AT$ if and only if $P$ lies on the circumcircle of triangle $ADE$.

1998 Turkey MO (2nd round), 2

Variable points $M$ and $N$ are considered on the arms $\left[ OX \right.$ and $\left[ OY \right.$ , respectively, of an angle $XOY$ so that $\left| OM \right|+\left| ON \right|$ is constant. Determine the locus of the midpoint of $\left[ MN \right]$.

2009 China Girls Math Olympiad, 2

Right triangle $ ABC,$ with $ \angle A\equal{}90^{\circ},$ is inscribed in circle $ \Gamma.$ Point $ E$ lies on the interior of arc $ {BC}$ (not containing $ A$) with $ EA>EC.$ Point $ F$ lies on ray $ EC$ with $ \angle EAC \equal{} \angle CAF.$ Segment $ BF$ meets $ \Gamma$ again at $ D$ (other than $ B$). Let $ O$ denote the circumcenter of triangle $ DEF.$ Prove that $ A,C,O$ are collinear.

1996 Canada National Olympiad, 4

Let triangle $ABC$ be an isosceles triangle with $AB = AC$. Suppose that the angle bisector of its angle $\angle B$ meets the side $AC$ at a point $D$ and that $BC = BD+AD$. Determine $\angle A$.

2008 Bosnia And Herzegovina - Regional Olympiad, 1

Given is an acute angled triangle $ \triangle ABC$ with side lengths $ a$, $ b$ and $ c$ (in an usual way) and circumcenter $ O$. Angle bisector of angle $ \angle BAC$ intersects circumcircle at points $ A$ and $ A_{1}$. Let $ D$ be projection of point $ A_{1}$ onto line $ AB$, $ L$ and $ M$ be midpoints of $ AC$ and $ AB$ , respectively. (i) Prove that $ AD\equal{}\frac{1}{2}(b\plus{}c)$ (ii) If triangle $ \triangle ABC$ is an acute angled prove that $ A_{1}D\equal{}OM\plus{}OL$

Kyiv City MO Juniors 2003+ geometry, 2018.8.41

In a trapezoid $ABCD$ with bases $AD$ and $BC$, the bisector of the angle $\angle DAB$ intersects the bisectors of the angles $\angle ABC$ and $\angle CDA$ at the points $P$ and $S$, respectively, and the bisector of the angle $\angle BCD$ intersects the bisectors of the angles $\angle ABC$ and $\angle CDA$ at the points $Q$ and $R$, respectively. Prove that if $PS\parallel RQ$, then $AB = CD$.

2004 Estonia National Olympiad, 2

Draw a line passing through a point $M$ on the angle bisector of the angle $\angle AOB$, that intersects $OA$ and $OB$ at points $K$ and $L$ respectively. Prove that the valus of the sum $\frac{1}{|OK|}+\frac{1}{|OL|}$ does not depend on the choice of the straight line passing through $M$, i.e. is defined by the size of the angle AOB and the selection of the point $M$ only.

Kyiv City MO Seniors 2003+ geometry, 2014.10.4.1

In the triangle $ABC$ the side $AC = \tfrac {1} {2} (AB + BC) $, $BL$ is the bisector $\angle ABC$, $K, \, \, M $ - the midpoints of the sides $AB$ and $BC$, respectively. Find the value $\angle KLM$ if $\angle ABC = \beta$

1968 IMO Shortlist, 14

A line in the plane of a triangle $ABC$ intersects the sides $AB$ and $AC$ respectively at points $X$ and $Y$ such that $BX = CY$ . Find the locus of the center of the circumcircle of triangle $XAY .$

1950 Poland - Second Round, 3

The diagonals of a quadrangle inscribed in a circle intersect at point $K$. The projections of the point $ K$ onto the subsequent sides of this quadrangle are points $M, N, P, Q$. Prove that these lines $KM$, $KN$, $KP$, $KQ$ are the angle bisectors of the quadrangle $MNPQ$.