This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 235

2024 Auckland Mathematical Olympiad, 4

The altitude $AH$ and the bisector $CL$ of triangle $ABC$ intersect at point $O$. Find the angle $BAC$, if it is known that the difference between angle $COH$ and half of angle $ABC$ is $46$.

2013 Sharygin Geometry Olympiad, 21

Chords $BC$ and $DE$ of circle $\omega$ meet at point $A$. The line through $D$ parallel to $BC$ meets $\omega$ again at $F$, and $FA$ meets $\omega$ again at $T$. Let $M = ET \cap BC$ and let $N$ be the reflection of $A$ over $M$. Show that $(DEN)$ passes through the midpoint of $BC$.

2002 IMO Shortlist, 3

The circle $S$ has centre $O$, and $BC$ is a diameter of $S$. Let $A$ be a point of $S$ such that $\angle AOB<120{{}^\circ}$. Let $D$ be the midpoint of the arc $AB$ which does not contain $C$. The line through $O$ parallel to $DA$ meets the line $AC$ at $I$. The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$. Prove that $I$ is the incentre of the triangle $CEF.$

2018 Irish Math Olympiad, 2

The triangle $ABC$ is right-angled at $A$. Its incentre is $I$, and $H$ is the foot of the perpendicular from $I$ on $AB$. The perpendicular from $H$ on $BC$ meets $BC$ at $E$, and it meets the bisector of $\angle ABC$ at $D$. The perpendicular from $A$ on $BC$ meets $BC$ at $F$. Prove that $\angle EFD = 45^o$

Brazil L2 Finals (OBM) - geometry, 2007.1

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be the intersection of straight lines $BO$ and $AC$ and $\omega$ be the circumcircle of triangle $AOP$. Suppose that $BO = AP$ and that the measure of the arc $OP$ in $\omega$, that does not contain $A$, is $40^o$. Determine the measure of the angle $\angle OBC$. [img]https://3.bp.blogspot.com/-h3UVt-yrJ6A/XqBItXzT70I/AAAAAAAAL2Q/7LVv0gmQWbo1_3rn906fTn6wosY1-nIfwCK4BGAYYCw/s1600/2007%2Bomb%2Bl2.png[/img]

2019 USMCA, 3

Let $ABC$ be a scalene triangle. The incircle of $ABC$ touches $\overline{BC}$ at $D$. Let $P$ be a point on $\overline{BC}$ satisfying $\angle BAP = \angle CAP$, and $M$ be the midpoint of $\overline{BC}$. Define $Q$ to be on $\overline{AM}$ such that $\overline{PQ} \perp \overline{AM}$. Prove that the circumcircle of $\triangle AQD$ is tangent to $\overline{BC}$.

2015 Gulf Math Olympiad, 2

a) Let $UVW$ , $U'V'W'$ be two triangles such that $ VW = V'W' , UV = U'V' , \angle WUV = \angle W'U'V'.$ Prove that the angles $\angle VWU , \angle V'W'U'$ are equal or supplementary. b) $ABC$ is a triangle where $\angle A$ is [b]obtuse[/b]. take a point $P$ inside the triangle , and extend $AP,BP,CP$ to meet the sides $BC,CA,AB$ in $K,L,M$ respectively. Suppose that $PL = PM .$ 1) If $AP$ bisects $\angle A$ , then prove that $AB = AC$ . 2) Find the angles of the triangle $ABC$ if you know that $AK,BL,CM$ are angle bisectors of the triangle $ABC$ and that $2AK = BL$.

2016 Sharygin Geometry Olympiad, 1

The diagonals of a parallelogram $ABCD$ meet at point $O$. The tangent to the circumcircle of triangle $BOC$ at $O$ meets ray $CB$ at point $F$. The circumcircle of triangle $FOD$ meets $BC$ for the second time at point $G$. Prove that $AG=AB$.

2021 JBMO Shortlist, G5

Let $ABC$ be an acute scalene triangle with circumcircle $\omega$. Let $P$ and $Q$ be interior points of the sides $AB$ and $AC$, respectively, such that $PQ$ is parallel to $BC$. Let $L$ be a point on $\omega$ such that $AL$ is parallel to $BC$. The segments $BQ$ and $CP$ intersect at $S$. The line $LS$ intersects $\omega$ at $K$. Prove that $\angle BKP = \angle CKQ$. Proposed by [i]Ervin Macić, Bosnia and Herzegovina[/i]

2015 India PRMO, 16

$16.$ In an acute angle triangle $ABC,$ let $D$ be the foot of the altitude from $A,$ and $E$ be the midpoint of $BC.$ Let $F$ be the midpoint of $AC.$ Suppose $\angle{BAE}=40^o. $ If $\angle{DAE}=\angle{DFE},$ What is the magnitude of $\angle{ADF}$ in degrees $?$

2002 Korea - Final Round, 2

Let $ABC$ be an acute triangle and let $\omega$ be its circumcircle. Let the perpendicular line from $A$ to $BC$ meet $\omega$ at $D$. Let $P$ be a point on $\omega$, and let $Q$ be the foot of the perpendicular line from $P$ to the line $AB$. Prove that if $Q$ is on the outside of $\omega$ and $2\angle QPB = \angle PBC$, then $D,P,Q$ are collinear.

2021 Science ON all problems, 3

Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $P$. A random line $\ell$ cuts $\omega_1$ at $A$ and $C$ and $\omega_2$ at $B$ and $D$ (points $A,C,B,D$ are in this order on $\ell$). Line $AP$ meets $\omega_2$ again at $E$ and line $BP$ meets $\omega_1$ again at $F$. Prove that the radical axis of circles $(PCD)$ and $(PEF)$ is parallel to $\ell$. \\ \\ [i](Vlad Robu)[/i]

2022 Saudi Arabia IMO TST, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2011 Sharygin Geometry Olympiad, 2

In triangle $ABC, \angle B = 2\angle C$. Points $P$ and $Q$ on the medial perpendicular to $CB$ are such that $\angle CAP = \angle PAQ = \angle QAB = \frac{\angle A}{3}$ . Prove that $Q$ is the circumcenter of triangle $CPB$.

2007 District Olympiad, 1

Point $O$ is the intersection of the perpendicular bisectors of the sides of the triangle $\vartriangle ABC$ . Let $D$ be the intersection of the line $AO$ with the segment $[BC]$. Knowing that $OD = BD = \frac 13 BC$, find the measures of the angles of the triangle $\vartriangle ABC$.

2019 Yasinsky Geometry Olympiad, p3

In the quadrilateral $ABCD$, the angles $B$ and $D$ are right . The diagonal $AC$ forms with the side $AB$ the angle of $40^o$, as well with side $AD$ an angle of $30^o$. Find the acute angle between the diagonals $AC$ and $BD$.

2015 Peru Cono Sur TST, P8

Let $ABCD$ be a cyclic quadrilateral such that the lines $AB$ and $CD$ intersects in $K$, let $M$ and $N$ be the midpoints of $AC$ and $CK$ respectively. Find the possible value(s) of $\angle ADC$ if the quadrilateral $MBND$ is cyclic.

2014 Oral Moscow Geometry Olympiad, 6

Inside an isosceles right triangle $ABC$ with hypotenuse $AB$ a point $M$ is taken such that the angle $\angle MAB$ is $15 ^o$ larger than the angle $\angle MAC$ , and the angle $\angle MCB$ is $15^o$ larger than the angle $\angle MBC$. Find the angle $\angle BMC$ .

2025 Bulgarian Spring Mathematical Competition, 9.2

Let $ABC$ be an acute scalene triangle inscribed in a circle \( \Gamma \). The angle bisector of \( \angle BAC \) intersects \( BC \) at \( L \) and \( \Gamma \) at \( S \). The point \( M \) is the midpoint of \( AL \). Let \( AD \) be the altitude in \( \triangle ABC \), and the circumcircle of \( \triangle DSL \) intersects \( \Gamma \) again at \( P \). Let \( N \) be the midpoint of \( BC \), and let \( K \) be the reflection of \( D \) with respect to \( N \). Prove that the triangles \( \triangle MPS \) and \( \triangle ADK \) are similar.

2015 Romania National Olympiad, 4

Consider $\vartriangle ABC$ where $\angle ABC= 60 ^o$. Points $M$ and $D$ are on the sides $(AC)$, respectively $(AB)$, such that $\angle BCA = 2 \angle MBC$, and $BD = MC$. Determine $\angle DMB$.

2019 Switzerland Team Selection Test, 5

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2015 Dutch BxMO/EGMO TST, 4

In a triangle $ABC$ the point $D$ is the intersection of the interior angle bisector of $\angle BAC$ and side $BC$. Let $P$ be the second intersection point of the exterior angle bisector of $\angle BAC$ with the circumcircle of $\angle ABC$. A circle through $A$ and $P$ intersects line segment $BP$ internally in $E$ and line segment $CP$ internally in $F$. Prove that $\angle DEP = \angle DFP$.

2020 USA EGMO Team Selection Test, 4

Let $ABC$ be a triangle. Distinct points $D$, $E$, $F$ lie on sides $BC$, $AC$, and $AB$, respectively, such that quadrilaterals $ABDE$ and $ACDF$ are cyclic. Line $AD$ meets the circumcircle of $\triangle ABC$ again at $P$. Let $Q$ denote the reflection of $P$ across $BC$. Show that $Q$ lies on the circumcircle of $\triangle AEF$. [i]Proposed by Ankan Bhattacharya[/i]

1952 Moscow Mathematical Olympiad, 229

In an isosceles triangle $\vartriangle ABC, \angle ABC = 20^o$ and $BC = AB$. Points $P$ and $Q$ are chosen on sides $BC$ and $AB$, respectively, so that $\angle PAC = 50^o$ and $\angle QCA = 60^o$ . Prove that $\angle PQC = 30^o$ .

2025 Bulgarian Spring Mathematical Competition, 12.4

Let $ABC$ be an acute-angled triangle \( ABC \) with \( AC > BC \) and incenter \( I \). Let \( \omega \) be the mixtilinear circle at vertex \( C \), i.e. the circle internally tangent to the circumcircle of \( \triangle ABC \) and also tangent to lines \( AC \) and \( BC \). A circle \( \Gamma \) passes through points \( A \) and \( B \) and is tangent to \( \omega \) at point \( T \), with \( C \notin \Gamma \) and \( I \) being inside \( \triangle ATB \). Prove that: $$\angle CTB + \angle ATI = 180^\circ + \angle BAI - \angle ABI.$$