This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2012 India Regional Mathematical Olympiad, 4

$H$ is the orthocentre of an acute–angled triangle $ABC$. A point $E$ is taken on the line segment $CH$ such that $ABE$ is a right–angled triangle. Prove that the area of the triangle $ABE$ is the geometric mean of the areas of triangles $ABC$ and $ABH$.

2019 Tournament Of Towns, 5

The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is a) tangential (circumscribed), b) cyclic (inscribed). (Nairi Sedrakyan)

1997 Israel Grosman Mathematical Olympiad, 2

Is there a planar polygon whose vertices have integer coordinates and whose area is $1/2$, such that this polygon is (a) a triangle with at least two sides longer than $1000$? (b) a triangle whose sides are all longer than $1000$? (c) a quadrangle?

Kyiv City MO 1984-93 - geometry, 1990.10.5

A circle centered at a point $(0, 1)$ on the coordinate plane intersects the parabola $y = x^2$ at four points: $A, B, C, D.$ Find the largest possible value of the area of ​​the quadrilateral $ABCD$.

2004 Alexandru Myller, 2

Tags: area , geometry
Let $ M,N,P,Q $ be points on the sides $ AB,BC,CD,DA $ (respectively) of a convex quadrilateral $ ABCD $ so that: $$ \frac{MA}{MB} =\frac{NB}{NC} =\frac{PD}{PC} =\frac{QA}{QD}\neq 1 $$ Show that the area of $ MNPQ $ is half the area of $ ABCD $ if and only if $ ABD $ and $ BCD $ have equal areas. [i]Petre Asaftei[/i]

Kvant 2023, M2750

Tags: geometry , area
Let $D, E$ and $F{}$ be the midpoints of the sides $BC, CA$ and $AB{}$ of the acute-angled triangle $ABC$ and let $H_a, H_b$ and $H_c{}$ be the orthocenters of the triangles $ABD, BCE$ and $CAF{}$ respectively. Prove that the triangles $H_aH_bH_c$ and $DEF$ have equal areas. [i]Proposed by Tran Quang Hung[/i]

2022 Durer Math Competition Finals, 5

Tags: circles , area , geometry
Benedek draws circles with the same center in the following way. The first circle he draws has radius $1$. Next, he draws a second circle such that the ring between the first and second circles has twice the area of the first circle. Next, he draws a third circle such that the ring between the second and third circles is three times the area of the first circle, and so on (see the diagram). What is the smallest $n$ fow which the radius of the $n$-th circle is an integer greater than $1$? [img]https://cdn.artofproblemsolving.com/attachments/e/2/afa6d5ead6f2252aa821028370a3768912e674.png[/img]

Kvant 2022, M2727

Tags: geometry , area
A convex quadrilateral $ABCD$ is given. Let $O_a$ be the circumcenter of the triangle $DBC$, and define $O_b,O_c$ and $O_d$ similarly. The points $O_a, O_b, O_c, O_d$ are the vertices of a convex quadrilateral. Prove that its area is equal to half of the absolute value of the difference between the areas of $AO_bCO_d$ and $BO_cDO_a$. [i]Proposed by V. Dubrovsky[/i]

Kvant 2020, M2629

Tags: area , polygon , geometry
The figure shows an arbitrary (green) triangle in the center. White squares were built on its sides to the outside. Some of their vertices were connected by segments, white squares were built on them again to the outside, and so on. In the spaces between the squares, triangles and quadrilaterals were formed, which were painted in different colors. Prove that [list=a] [*]all colored quadrilaterals are trapezoids; [*]the areas of all polygons of the same color are equal; [*]the ratios of the bases of one-color trapezoids are equal; [*]if $S_0=1$ is the area of the original triangle, and $S_i$ is the area of the colored polygons at the $i^{\text{th}}$ step, then $S_1=1$, $S_2=5$ and for $n\geqslant 3$ the equality $S_n=5S_{n-1}-S_{n-2}$ is satisfied. [/list] [i]Proposed by F. Nilov[/i] [center][img width="40"]https://i.ibb.co/n8gt0pV/Screenshot-2023-03-09-174624.png[/img][/center]

1962 Polish MO Finals, 2

Inside a given convex quadrilateral, find a point such that the segments connecting this point with the midpoints of the quadrilateral's sides divide the quadrilateral into four parts with equal areas.

2023 Czech-Polish-Slovak Junior Match, 6

Tags: rectangle , geometry , area
Given a rectangle $ABCD$. Points $E$ and $F$ lie on sides $BC$ and $CD$ respectively so that the area of triangles $ABE$, $ECF$, $FDA$ is equal to $1$. Determine the area of triangle $AEF$.

VII Soros Olympiad 2000 - 01, 9.7

Tags: area , geometry
Sides $AB$ and $CD$ of quadrilateral $ABCD$ intersect at point $E$. On the diagonals$ AC$ and $BD$ points $M$ and $N$ are taken, respectively, so that $AM / AC = BN / BD = k$. Find the area of ​​a triangle $EMN$ if the area of ​​$ABCD$ is $S$.

II Soros Olympiad 1995 - 96 (Russia), 10.10

The Order "For Faithful Service" of the $7$th degree in shape is a combination of a semicircle with a diameter $AB = 2$ and a triangle $AM B$. The sides$ AM$ and $BM$ intersect the semicircle (the border of the semicircle). The part of the circle outside the triangle and the part of the triangle outside the circle are made of pure copper. What should the side of the triangle be equal to in order for the area of the copper part to be the smallest?

2000 Czech And Slovak Olympiad IIIA, 3

In the plane are given $2000$ congruent triangles of area $1$, which are all images of one triangle under translations. Each of these triangles contains the centroid of every other triangle. Prove that the union of these triangles has area less than $22/9$.

1971 All Soviet Union Mathematical Olympiad, 152

a) Prove that the line dividing the triangle onto two polygons with equal perimeters and equal areas passes through the centre of the inscribed circle. b) Prove the same statement for the arbitrary tangential polygon. c) Prove that all the lines halving its perimeter and area simultaneously, intersect in one point.

Cono Sur Shortlist - geometry, 2005.G2

Find the ratio between the sum of the areas of the circles and the area of the fourth circle that are shown in the figure Each circle passes through the center of the previous one and they are internally tangent. [img]https://cdn.artofproblemsolving.com/attachments/d/2/29d2be270f7bcf9aee793b0b01c2ef10131e06.jpg[/img]

2024 CIIM, 4

Given the points $O = (0, 0)$ and $A = (2024, -2024)$ in the plane. For any positive integer $n$, Damian draws all the points with integer coordinates $B_{i,j} = (i, j)$ with $0 \leq i, j \leq n$ and calculates the area of each triangle $OAB_{i,j}$. Let $S(n)$ denote the sum of the $(n+1)^2$ areas calculated above. Find the following limit: \[ \lim_{n \to \infty} \frac{S(n)}{n^3}. \]

2022 Sharygin Geometry Olympiad, 8.4

Let $ABCD$ be a cyclic quadrilateral, $O$ be its circumcenter, $P$ be a common points of its diagonals, and $M , N$ be the midpoints of $AB$ and $CD$ respectively. A circle $OPM$ meets for the second time segments $AP$ and $BP$ at points $A_1$ and $B_1$ respectively and a circle $OPN$ meets for the second time segments $CP$ and $DP$ at points $C_1$ and $D_1$ respectively. Prove that the areas of quadrilaterals $AA_1B_1B$ and $CC_1D_1D$ are equal.

1975 Czech and Slovak Olympiad III A, 1

Let $\mathbf T$ be a triangle with $[\mathbf T]=1.$ Show that there is a right triangle $\mathbf R$ such that $[\mathbf R]\le\sqrt3$ and $\mathbf T\subseteq\mathbf R.$ ($[-]$ denotes area of a triangle.)

2013 Oral Moscow Geometry Olympiad, 3

Is there a polyhedron whose area ratio of any two faces is at least $2$ ?

Denmark (Mohr) - geometry, 2002.1

Tags: rectangle , area , geometry
An interior point in a rectangle is connected by line segments to the midpoints of its four sides. Thus four domains (polygons) with the areas $a, b, c$ and $d$ appear (see the figure). Prove that $a + c = b + d$. [img]https://1.bp.blogspot.com/-BipDNHELjJI/XzcCa68P3HI/AAAAAAAAMXY/H2Iqya9VItMLXrRqsdyxHLTXCAZ02nEtgCLcBGAsYHQ/s0/2002%2BMohr%2Bp1.png[/img]

2003 Belarusian National Olympiad, 8

Given a convex pentagon $ABCDE$ with $AB=BC, CD=DE, \angle ABC=150^o, \angle CDE=30^o, BD=2$. Find the area of $ABCDE$. (I.Voronovich)

2023 Belarusian National Olympiad, 10.5

Tags: geometry , area
On hyperbola $y=\frac{1}{x}$ points $A_1,\ldots,A_{10}$ are chosen such that $(A_i)_x=2^{i-1}a$, where $a$ is some positive constant. Find the area of $A_1A_2 \ldots A_{10}$

Kyiv City MO 1984-93 - geometry, 1991.9.3

Tags: geometry , area
The point $M$ is the midpoint of the median $BD$ of the triangle $ABC$, the area of ​​which is $S$. The line $AM$ intersects the side $BC$ at the point $K$. Determine the area of ​​the triangle $BKM$.

2002 Tuymaada Olympiad, 8

The circle with the center of $ O $ touches the sides of the angle $ A $ at the points of $ K $ and $ M $. The tangent to the circle intersects the segments $ AK $ and $ AM $ at points $ B $ and $ C $ respectively, and the line $ KM $ intersects the segments $ OB $ and $ OC $ at the points $ D $ and $ E $. Prove that the area of the triangle $ ODE $ is equal to a quarter of the area of a triangle $ BOC $ if and only if the angle $ A $ is $ 60^\circ $.