This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 3

Let $a$ be a positive real number. Evaluate $I=\int_0^{+\infty} \frac{\sin x\cos x}{x(x^2+a^2)}dx.$

2008 China Team Selection Test, 2

In a plane, there is an infinite triangular grid consists of equilateral triangles whose lengths of the sides are equal to $ 1$, call the vertices of the triangles the lattice points, call two lattice points are adjacent if the distance between the two points is equal to $ 1;$ A jump game is played by two frogs $ A,B,$ "A jump" is called if the frogs jump from the point which it is lying on to its adjacent point, " A round jump of $ A,B$" is called if first $ A$ jumps and then $ B$ by the following rules: Rule (1): $ A$ jumps once arbitrarily, then $ B$ jumps once in the same direction, or twice in the opposite direction; Rule (2): when $ A,B$ sits on adjacent lattice points, they carry out Rule (1) finishing a round jump, or $ A$ jumps twice continually, keep adjacent with $ B$ every time, and $ B$ rests on previous position; If the original positions of $ A,B$ are adjacent lattice points, determine whether for $ A$ and $ B$,such that the one can exactly land on the original position of the other after a finite round jumps.

2011 Today's Calculation Of Integral, 728

Evaluate \[\int_{\frac {\pi}{12}}^{\frac{\pi}{6}} \frac{\sin x-\cos x-x(\sin x+\cos x)+1}{x^2-x(\sin x+\cos x)+\sin x\cos x}\ dx.\]

2012 Putnam, 4

Suppose that $a_0=1$ and that $a_{n+1}=a_n+e^{-a_n}$ for $n=0,1,2,\dots.$ Does $a_n-\log n$ have a finite limit as $n\to\infty?$ (Here $\log n=\log_en=\ln n.$)

2013 Bogdan Stan, 3

$ \int \frac{1+2x^3}{1+x^2-2x^3+x^6} dx $ [i]Ion Nedelcu[/i] and [i]Lucian Tutescu[/i]

2007 Today's Calculation Of Integral, 217

Evaluate $ \int_{0}^{1}e^{\sqrt{e^{x}}}\ dx\plus{}2\int_{e}^{e^{\sqrt{e}}}\ln (\ln x)\ dx$.

2022 VJIMC, 3

Let $f:[0,1]\to\mathbb R$ be a given continuous function. Find the limit $$\lim_{n\to\infty}(n+1)\sum_{k=0}^n\int^1_0x^k(1-x)^{n-k}f(x)dx.$$

2005 District Olympiad, 4

Let $(A,+,\cdot)$ be a finite unit ring, with $n\geq 3$ elements in which there exist [b]exactly[/b] $\dfrac {n+1}2$ perfect squares (e.g. a number $b\in A$ is called a perfect square if and only if there exists an $a\in A$ such that $b=a^2$). Prove that a) $1+1$ is invertible; b) $(A,+,\cdot)$ is a field. [i]Proposed by Marian Andronache[/i]

2011 Today's Calculation Of Integral, 754

Let $S_n$ be the area of the figure enclosed by a curve $y=x^2(1-x)^n\ (0\leq x\leq 1)$ and the $x$-axis. Find $\lim_{n\to\infty} \sum_{k=1}^n S_k.$

2009 Today's Calculation Of Integral, 405

Calculate $ \displaystyle \left|\frac {\int_0^{\frac {\pi}{2}} (x\cos x + 1)e^{\sin x}\ dx}{\int_0^{\frac {\pi}{2}} (x\sin x - 1)e^{\cos x}\ dx}\right|$.

1996 South africa National Olympiad, 3

The sides of triangle $ABC$ has integer lengths. Given that $AC=6$ and $\angle BAC=120^\circ$, determine the lengths of the other two sides.

1992 Brazil National Olympiad, 1

The equation $x^3+px+q=0$ has three distinct real roots. Show that $p<0$

2009 Today's Calculation Of Integral, 429

Find the length of the curve expressed by the polar equation: $ r\equal{}1\plus{}\cos \theta \ (0\leq \theta \leq \pi)$.

2008 Mathcenter Contest, 6

Find all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying the equation \[ f(x^2+y^2+2f(xy)) = (f(x+y))^2. \] for all $x,y \in \mathbb{R}$.

2012 ISI Entrance Examination, 6

[b]i)[/b] Let $0<a<b$.Prove that amongst all triangles having base $a$ and perimeter $a+b$ the triangle having two sides(other than the base) equal to $\frac {b}{2}$ has the maximum area. [b]ii)[/b]Using $i)$ or otherwise, prove that amongst all quadrilateral having give perimeter the square has the maximum area.

2009 Today's Calculation Of Integral, 498

Let $ f(x)$ be a continuous function defined in the interval $ 0\leq x\leq 1.$ Prove that $ \int_0^1 xf(x)f(1\minus{}x)\ dx\leq \frac{1}{4}\int_0^1 \{f(x)^2\plus{}f(1\minus{}x)^2\}\ dx.$

1999 Putnam, 2

Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=Q(x)P^{\prime\prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime\prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have $n$ distinct roots.

2006 Swedish Mathematical Competition, 3

A cubic polynomial $f$ with a positive leading coefficient has three different positive zeros. Show that $f'(a)+ f'(b)+ f'(c) > 0$.

2005 Today's Calculation Of Integral, 39

Find the minimum value of the following function $f(x) $ defined at $0<x<\frac{\pi}{2}$. \[f(x)=\int_0^x \frac{d\theta}{\cos \theta}+\int_x^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta}\]

PEN P Problems, 12

The positive function $p(n)$ is defined as the number of ways that the positive integer $n$ can be written as a sum of positive integers. Show that, for all positive integers $n \ge 2$, \[2^{\lfloor \sqrt{n}\rfloor}< p(n) < n^{3 \lfloor\sqrt{n}\rfloor }.\]

2018 ISI Entrance Examination, 5

Tags: calculus
Let $f:\mathbb{R}\to\mathbb{R}$ be a differentiable function such that its derivative $f'$ is a continuous function. Moreover, assume that for all $x\in\mathbb{R}$, $$0\leqslant \vert f'(x)\vert\leqslant \frac{1}{2}$$ Define a sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ by :$$a_1=1~~\text{and}~~a_{n+1}=f(a_n)~\text{for all}~n\in\mathbb{N}$$ Prove that there exists a positive real number $M$ such that for all $n\in\mathbb{N}$, $$\vert a_n\vert \leqslant M$$

2013 District Olympiad, 3

Problem 3. Let $f:\left[ 0,\frac{\pi }{2} \right]\to \left[ 0,\infty \right)$ an increasing function .Prove that: (a) $\int_{0}^{\frac{\pi }{2}}{\left( f\left( x \right)-f\left( \frac{\pi }{4} \right) \right)}\left( \sin x-\cos x \right)dx\ge 0.$ (b) Exist $a\in \left[ \frac{\pi }{4},\frac{\pi }{2} \right]$ such that $\int_{0}^{a}{f\left( x \right)\sin x\ dx=}\int_{0}^{a}{f\left( x \right)\cos x\ dx}.$

2006 APMO, 2

Prove that every positive integer can be written as a finite sum of distinct integral powers of the golden ratio.

2000 Harvard-MIT Mathematics Tournament, 15

Tags: algebra , calculus
$$\lim_{n \to \infty} nr\sqrt[2]{1-\cos \frac{2\pi}{n}}=?$$

2013 Saint Petersburg Mathematical Olympiad, 1

Find the minimum positive noninteger root of $ \sin x=\sin \lfloor x \rfloor $. F. Petrov