This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2011 BMO TST, 2

The area and the perimeter of the triangle with sides $10,8,6$ are equal. Find all the triangles with integral sides whose area and perimeter are equal.

2006 Turkey Team Selection Test, 2

How many ways are there to divide a $2\times n$ rectangle into rectangles having integral sides, where $n$ is a positive integer?

1985 IMO Longlists, 78

The sequence $f_1, f_2, \cdots, f_n, \cdots $ of functions is defined for $x > 0$ recursively by \[f_1(x)=x , \quad f_{n+1}(x) = f_n(x) \left(f_n(x) + \frac 1n \right)\] Prove that there exists one and only one positive number $a$ such that $0 < f_n(a) < f_{n+1}(a) < 1$ for all integers $n \geq 1.$

2010 Romania Team Selection Test, 1

A nonconstant polynomial $f$ with integral coefficients has the property that, for each prime $p$, there exist a prime $q$ and a positive integer $m$ such that $f(p) = q^m$. Prove that $f = X^n$ for some positive integer $n$. [i]AMM Magazine[/i]

2010 Today's Calculation Of Integral, 661

Consider a sequence $1^{0.01},\ 2^{0.02},\ 2^{0.02},\ 3^{0.03},\ 3^{0.03},\ 3^{0.03},\ 4^{0.04},\ 4^{0.04},\ 4^{0.04},\ 4^{0.04},\ \cdots$. (1) Find the 36th term. (2) Find $\int x^2\ln x\ dx$. (3) Let $A$ be the product of from the first term to the 36th term. How many digits does $A$ have integer part? If necessary, you may use the fact $2.0<\ln 8<2.1,\ 2.1<\ln 9<2.2,\ 2.30<\ln 10<2.31$. [i]2010 National Defense Medical College Entrance Exam, Problem 4[/i]

2013 VJIMC, Problem 1

Tags: limit , calculus , function
Let $f:[0,\infty)\to\mathbb R$ be a differentiable function with $|f(x)|\le M$ and $f(x)f'(x)\ge\cos x$ for $x\in[0,\infty)$, where $M>0$. Prove that $f(x)$ does not have a limit as $x\to\infty$.

2019 District Olympiad, 4

Let $a$ be a real number, $a>1.$ Find the real numbers $b \ge 1$ such that $$\lim_{x \to \infty} \int\limits_0^x (1+t^a)^{-b} \mathrm{d}t=1.$$

2011 Today's Calculation Of Integral, 701

Evaluate \[\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{(1+\cos x)\{1-\tan ^ 2 \frac{x}{2}\tan (x+\sin x)\tan (x-\sin x)\}}{\tan (x+\sin x)}\ dx\]

2021 The Chinese Mathematics Competition, Problem 9

Tags: calculus
Let $f(x)$ be a twice continuously differentiable function on closed interval $[a,b]$ Prove that $\lim_{n \to \infty} n^2[\int_{a}^{b}f(x)dx-\frac{b-a}{n}\sum_{k=1}^{n}f(a+\frac{2k-1}{2n}(b-a))]=\frac{(b-a)^2}{24}[f'(b)-f'(a)]$

2011 Today's Calculation Of Integral, 692

Evaluate $\int_0^{\frac{\pi}{12}} \frac{\tan ^ 2 x-3}{3\tan ^ 2 x-1}dx$. created by kunny

2024 VJIMC, 1

Let $f:\mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Prove that \[\left\vert f(1)-\int_0^1 f(x) dx\right\vert \le \frac{1}{2} \max_{x \in [0,1]} \vert f'(x)\vert.\]

2009 Today's Calculation Of Integral, 397

In $ xy$ plane, find the minimum volume of the solid by rotating the region boubded by the parabola $ y \equal{} x^2 \plus{} ax \plus{} b$ passing through the point $ (1,\ \minus{} 1)$ and the $ x$ axis about the $ x$ axis

2003 National Olympiad First Round, 16

For which of the following values of real number $t$, the equation $x^4-tx+\dfrac 1t = 0$ has no root on the interval $[1,2]$? $ \textbf{(A)}\ 6 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ \text{None of the preceding} $

2012 Today's Calculation Of Integral, 847

Consider a right-angled triangle with $AB=1,\ AC=\sqrt{3},\ \angle{BAC}=\frac{\pi}{2}.$ Let $P_1,\ P_2,\ \cdots\cdots,\ P_{n-1}\ (n\geq 2)$ be the points which are closest from $A$, in this order and obtained by dividing $n$ equally parts of the line segment $AB$. Denote by $A=P_0,\ B=P_n$, answer the questions as below. (1) Find the inradius of $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. (2) Denote by $S_n$ the total sum of the area of the incircle for $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. Let $I_n=\frac{1}{n}\sum_{k=0}^{n-1} \frac{1}{3+\left(\frac{k}{n}\right)^2}$, show that $nS_n\leq \frac {3\pi}4I_n$, then find the limit $\lim_{n\to\infty} I_n$. (3) Find the limit $\lim_{n\to\infty} nS_n$.

2011 Today's Calculation Of Integral, 705

The parametric equations of a curve are given by $x = 2(1+\cos t)\cos t,\ y =2(1+\cos t)\sin t\ (0\leq t\leq 2\pi)$. (1) Find the maximum and minimum values of $x$. (2) Find the volume of the solid enclosed by the figure of revolution about the $x$-axis.

Today's calculation of integrals, 872

Let $n$ be a positive integer. (1) For a positive integer $k$ such that $1\leq k\leq n$, Show that : \[\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).\] (2) Find the area $S_n$ of the part expressed by a parameterized curve $C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).$ If necessary, you may use ${\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).$ (3) Find $\lim_{n\to\infty} S_n.$

2009 Stanford Mathematics Tournament, 5

Find the minimum possible value of $2x^2+2xy+4y+5y^2-x$ for real numbers $x$ and $y$.

2005 National Olympiad First Round, 19

What is the greatest real root of the equation $x^3-x^2-x-\frac 13 = 0$? $ \textbf{(A)}\ \dfrac{\sqrt {3} - \sqrt{2}}{2} \qquad\textbf{(B)}\ \dfrac{\sqrt [3]{3} - \sqrt[3]{2}}{2} \qquad\textbf{(C)}\ \dfrac 1{\sqrt[3] {3} - 1} \qquad\textbf{(D)}\ \dfrac 1{\sqrt[3] {4} - 1} \qquad\textbf{(E)}\ \text{None of above} $

2012 Today's Calculation Of Integral, 833

Let $f(x)=\int_0^{x} e^{t} (\cos t+\sin t)\ dt,\ g(x)=\int_0^{x} e^{t} (\cos t-\sin t)\ dt.$ For a real number $a$, find $\sum_{n=1}^{\infty} \frac{e^{2a}}{\{f^{(n)}(a)\}^2+\{g^{(n)}(a)\}^2}.$

2017 CMI B.Sc. Entrance Exam, 1

Answer the following questions : [b](a)[/b] Evaluate $~~\lim_{x\to 0^{+}} \Big(x^{x^x}-x^x\Big)$ [b](b)[/b] Let $A=\frac{2\pi}{9}$, i.e. $40$ degrees. Calculate the following $$1+\cos A+\cos 2A+\cos 4A+\cos 5A+\cos 7A+\cos 8A$$ [b](c)[/b] Find the number of solutions to $$e^x=\frac{x}{2017}+1$$

2009 Today's Calculation Of Integral, 466

For $ n \equal{} 1,\ 2,\ 3,\ \cdots$, let $ (p_n,\ q_n)\ (p_n > 0,\ q_n > 0)$ be the point of intersection of $ y \equal{} \ln (nx)$ and $ \left(x \minus{} \frac {1}{n}\right)^2 \plus{} y^2 \equal{} 1$. (1) Show that $ 1 \minus{} q_n^2\leq \frac {(e \minus{} 1)^2}{n^2}$ to find $ \lim_{n\to\infty} q_n$. (2) Find $ \lim_{n\to\infty} n\int_{\frac {1}{n}}^{p_n} \ln (nx)\ dx$.

1997 VJIMC, Problem 2

Let $f:\mathbb C\to\mathbb C$ be a holomorphic function with the property that $|f(z)|=1$ for all $z\in\mathbb C$ such that $|z|=1$. Prove that there exists a $\theta\in\mathbb R$ and a $k\in\{0,1,2,\ldots\}$ such that $$f(z)=e^{i\theta}z^k$$for all $z\in\mathbb C$.

1974 AMC 12/AHSME, 10

What is the smallest integral value of $k$ such that \[ 2x(kx-4)-x^2+6=0 \] has no real roots? $ \textbf{(A)}\ -1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5 $

2009 Princeton University Math Competition, 7

Find the maximal positive integer $n$, so that for any real number $x$ we have $\sin^{n}{x}+\cos^{n}{x} \geq \frac{1}{n}$.