This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2018 AMC 12/AHSME, 25

Tags: geometry , circles
Circles $\omega_1$, $\omega_2$, and $\omega_3$ each have radius $4$ and are placed in the plane so that each circle is externally tangent to the other two. Points $P_1$, $P_2$, and $P_3$ lie on $\omega_1$, $\omega_2$, and $\omega_3$ respectively such that $P_1P_2=P_2P_3=P_3P_1$ and line $P_iP_{i+1}$ is tangent to $\omega_i$ for each $i=1,2,3$, where $P_4 = P_1$. See the figure below. The area of $\triangle P_1P_2P_3$ can be written in the form $\sqrt{a}+\sqrt{b}$ for positive integers $a$ and $b$. What is $a+b$? [asy] unitsize(12); pair A = (0, 8/sqrt(3)), B = rotate(-120)*A, C = rotate(120)*A; real theta = 41.5; pair P1 = rotate(theta)*(2+2*sqrt(7/3), 0), P2 = rotate(-120)*P1, P3 = rotate(120)*P1; filldraw(P1--P2--P3--cycle, gray(0.9)); draw(Circle(A, 4)); draw(Circle(B, 4)); draw(Circle(C, 4)); dot(P1); dot(P2); dot(P3); defaultpen(fontsize(10pt)); label("$P_1$", P1, E*1.5); label("$P_2$", P2, SW*1.5); label("$P_3$", P3, N); label("$\omega_1$", A, W*17); label("$\omega_2$", B, E*17); label("$\omega_3$", C, W*17); [/asy] $\textbf{(A) }546\qquad\textbf{(B) }548\qquad\textbf{(C) }550\qquad\textbf{(D) }552\qquad\textbf{(E) }554$

1977 IMO Longlists, 13

Describe all closed bounded figures $\Phi$ in the plane any two points of which are connectable by a semicircle lying in $\Phi$.

2021 Indonesia TST, G

The circles $k_1$ and $k_2$ intersect at points $A$ and $B$, and $k_1$ passes through the center $O$ of the circle $k_2$. The line $p$ intersects $k_1$ at the points $K ,O$ and $k_2$ at the points $L ,M$ so that $L$ lies between $K$ and $O$. The point $P$ is the projection of $L$ on the line $AB$. Prove that $KP$ is parallel to the median of triangle $ABM$ drawn from the vertex $M$.

1950 Moscow Mathematical Olympiad, 173

On a chess board, the boundaries of the squares are assumed to be black. Draw a circle of the greatest possible radius lying entirely on the black squares.

2019 Belarusian National Olympiad, 9.6

Tags: circles , geometry
The point $M$ is the midpoint of the side $BC$ of triangle $ABC$. A circle is passing through $B$, is tangent to the line $AM$ at $M$, and intersects the segment $AB$ secondary at the point $P$. Prove that the circle, passing through $A$, $P$, and the midpoint of the segment $AM$, is tangent to the line $AC$. [i](A. Voidelevich)[/i]

1995 Tuymaada Olympiad, 4

It is known that the merchant’s $n$ clients live in locations laid along the ring road. Of these, $k$ customers have debts to the merchant for $a_1,a_2,...,a_k$ rubles, and the merchant owes the remaining $n-k$ clients, whose debts are $b_1,b_2,...,b_{n-k}$ rubles, moreover, $a_1+a_2+...+a_k=b_1+b_2+...+b_{n-k}$. Prove that a merchant who has no money can pay all his debts and have paid all the customer debts, by starting a customer walk along the road from one of points and not missing any of their customers.

2002 IMO Shortlist, 4

Circles $S_1$ and $S_2$ intersect at points $P$ and $Q$. Distinct points $A_1$ and $B_1$ (not at $P$ or $Q$) are selected on $S_1$. The lines $A_1P$ and $B_1P$ meet $S_2$ again at $A_2$ and $B_2$ respectively, and the lines $A_1B_1$ and $A_2B_2$ meet at $C$. Prove that, as $A_1$ and $B_1$ vary, the circumcentres of triangles $A_1A_2C$ all lie on one fixed circle.

1995 Portugal MO, 4

Tags: geometry , circles
The diameter $[AC]$ of a circle is divided into four equal segments by points $P, M$ and $Q$. Consider a segment $[BD]$ that passes through $P$ and cuts the circle at $B$ and $D$, such that $PD =\frac{3}{2} AP$. Knowing that the area of the triangle $[ABP]$ has measure $1$ cm$^2$ , calculate the area of $[ABCD]$? [img]https://1.bp.blogspot.com/-ibre0taeRo8/X4KiWWSROEI/AAAAAAAAMl4/xFNfpQBxmMMVLngp5OWOXRLMuaxf3nolQCLcBGAsYHQ/s154/1995%2Bportugal%2Bp5.png[/img]

1985 IMO Shortlist, 16

If possible, construct an equilateral triangle whose three vertices are on three given circles.

2022 Francophone Mathematical Olympiad, 3

Let $ABC$ be a triangle and $\Gamma$ its circumcircle. Denote $\Delta$ the tangent at $A$ to the circle $\Gamma$. $\Gamma_1$ is a circle tangent to the lines $\Delta$, $(AB)$ and $(BC)$, and $E$ its touchpoint with the line $(AB)$. Let $\Gamma_2$ be a circle tangent to the lines $\Delta$, $(AC)$ and $(BC)$, and $F$ its touchpoint with the line $(AC)$. We suppose that $E$ and $F$ belong respectively to the segments $[AB]$ and $[AC]$, and that the two circles $\Gamma_1$ and $\Gamma_2$ lie outside triangle $ABC$. Show that the lines $(BC)$ and $(EF)$ are parallel.

2011 Kyiv Mathematical Festival, 5

Pete claims that he can draw $4$ segments of length $1$ and a circle of radius less than $\sqrt3 /3 $ on a piece of paper, such that all segments would lie inside the circle and there would be no line that intersects each of $4$ segments. Is Pete right?

2016 Saudi Arabia IMO TST, 2

Let $ABC$ be a triangle inscribed in the circle $(O)$ and $P$ is a point inside the triangle $ABC$. Let $D$ be a point on $(O)$ such that $AD \perp AP$. The line $CD$ cuts the perpendicular bisector of $BC$ at $M$. The line $AD$ cuts the line passing through $B$ and is perpendicular to $BP$ at $Q$. Let $N$ be the reflection of $Q$ through $M$. Prove that $CN \perp CP$.

2004 Chile National Olympiad, 6

The $ AB, BC $ and $ CD $ segments of the polygon $ ABCD $ have the same length and are tangent to a circle $ S $, centered on the point $ O $. Let $ P $ be the point of tangency of $ BC $ with $ S $, and let $ Q $ be the intersection point of lines $ AC $ and $ BD $. Show that the point $ Q $ is collinear with the points $ P $ and $ O $.

2010 Denmark MO - Mohr Contest, 1

Four right triangles, each with the sides $1$ and $2$, are assembled to a figure as shown. How large a fraction does the area of the small circle make up of that of the big one? [img]https://1.bp.blogspot.com/-XODK1XKCS0Q/XzXDtcA-xAI/AAAAAAAAMWA/zSLPpf3IcX0rgaRtOxm_F2begnVdUargACLcBGAsYHQ/s0/2010%2BMohr%2Bp1.png[/img]

2015 European Mathematical Cup, 3

Tags: geometry , circles , median
Circles $k_1$ and $k_2$ intersect in points $A$ and $B$, such that $k_1$ passes through the center $O$ of the circle $k_2$. The line $p$ intersects $k_1$ in points $K$ and $O$ and $k_2$ in points $L$ and $M$, such that the point $L$ is between $K$ and $O$. The point $P$ is orthogonal projection of the point $L$ to the line $AB$. Prove that the line $KP$ is parallel to the $M-$median of the triangle $ABM$. [i]Matko Ljulj[/i]

2009 Oral Moscow Geometry Olympiad, 6

Fixed two circles $w_1$ and $w_2$, $\ell$ one of their external tangent and $m$ one of their internal tangent . On the line $m$, a point $X$ is chosen, and on the line $\ell$, points $Y$ and $Z$ are constructed so that $XY$ and $XZ$ touch $w_1$ and $w_2$, respectively, and the triangle $XYZ$ contains circles $w_1$ and $w_2$. Prove that the centers of the circles inscribed in triangles $XYZ$ lie on one line. (P. Kozhevnikov)

2014 Hanoi Open Mathematics Competitions, 14

Let $\omega$ be a circle with centre $O$, and let $\ell$ be a line that does not intersect $\omega$. Let $P$ be an arbitrary point on $\ell$. Let $A,B$ denote the tangent points of the tangent lines from $P$. Prove that $AB$ passes through a point being independent of choosing $P$.

2016 Kyiv Mathematical Festival, P5

Tags: circles , geometry
Let $AD$ and $BE$ be the altitudes of acute triangle $ABC.$ The circles with diameters $AD$ and $BE$ intersect at points $S$ and $T$. Prove that $\angle ACS=\angle BCT.$

2011 Oral Moscow Geometry Olympiad, 3

A non-isosceles trapezoid $ABCD$ ($AB // CD$) is given. An arbitrary circle passing through points $A$ and $B$ intersects the sides of the trapezoid at points $P$ and $Q$, and the intersect the diagonals at points $M$ and $N$. Prove that the lines $PQ, MN$ and $CD$ are concurrent.

2015 Indonesia MO Shortlist, G8

$ABC$ is an acute triangle with $AB> AC$. $\Gamma_B$ is a circle that passes through $A,B$ and is tangent to $AC$ on $A$. Define similar for $ \Gamma_C$. Let $D$ be the intersection $\Gamma_B$ and $\Gamma_C$ and $M$ be the midpoint of $BC$. $AM$ cuts $\Gamma_C$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle $ABC$. Prove that the circumscibed circle of the triangle $ODE$ is tangent to $\Gamma_B$.

1992 Austrian-Polish Competition, 5

Given a circle $k$ with center $M$ and radius $r$, let $AB$ be a fixed diameter of $k$ and let $K$ be a fixed point on the segment $AM$. Denote by $t$ the tangent of $k$ at $A$. For any chord $CD$ through $K$ other than $AB$, denote by $P$ and Q the intersection points of $BC$ and $BD$ with $t$, respectively. Prove that $AP\cdot AQ$ does not depend on $CD$.

2018 Bangladesh Mathematical Olympiad, 2

BdMO National 2018 Higher Secondary P2 $AB$ is a diameter of a circle and $AD$ & $BC$ are two tangents of that circle.$AC$ & $BD$ intersect on a point of the circle.$AD=a$ & $BC=b$.If $a\neq b$ then $AB=?$

1995 ITAMO, 5

Two non-coplanar circles in space are tangent at a point and have the same tangents at this point. Show that both circles lie on some sphere.

Mathley 2014-15, 1

Tags: circles , geometry , fixed
Let $ABC$ be an acute triangle inscribed in a circle $(O)$ that is fixed, and two of the vertices $B$, $C$ are fixed while vertex $A$ varies on the circumference of the circle. Let $I$ be the center of the incircle, and $AD$ the angle bisector. Let $K$, $L$ be the circumcenters of $CAD$, $ABD$. A line through $O$ parallel to $DL$, $DK$ intersects the line that is through $I$ perpendicular to $IB$, $IC$ at $M$, $N$ respectively. Prove that $MN$ is tangent to a fixed circle when $A$ varies on the circle $(O)$. Tran Quang Hung, Natural Science High School, National University, Hanoi

2019 Yasinsky Geometry Olympiad, p1

The circle $x^2 + y^2 = 25$ intersects the abscissa in points $A$ and $B$. Let $P$ be a point that lies on the line $x = 11$, $C$ is the intersection point of this line with the $Ox$ axis, and the point $Q$ is the intersection point of $AP$ with the given circle. It turned out that the area of the triangle $AQB$ is four times smaller than the area of the triangle $APC$. Find the coordinates of $Q$.