This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 241

1999 Poland - Second Round, 4

Let $P$ be a point inside a triangle $ABC$ such that $\angle PAB = \angle PCA$ and $\angle PAC = \angle PBA$. If $O \ne P$ is the circumcenter of $\triangle ABC$, prove that $\angle APO$ is right.

2019 Bulgaria EGMO TST, 1

Determine the length of $BC$ in an acute triangle $ABC$ with $\angle ABC = 45^{\circ}$, $OG = 1$ and $OG \parallel BC$. (As usual $O$ is the circumcenter and $G$ is the centroid.)

2021 Sharygin Geometry Olympiad, 8.4

Let $A_1$ and $C_1$ be the feet of altitudes $AH$ and $CH$ of an acute-angled triangle $ABC$. Points $A_2$ and $C_2$ are the reflections of $A_1$ and $C_1$ about $AC$. Prove that the distance between the circumcenters of triangles $C_2HA_1$ and $C_1HA_2$ equals $AC$.

2019 Junior Balkan Team Selection Tests - Romania, 3

In the acute triangle $ABC$ point $I$ is the incenter, $O$ is the circumcenter, while $I_a$ is the excenter opposite the vertex $A$. Point $A'$ is the reflection of $A$ across the line $BC$. Prove that angles $\angle IOI_a$ and $\angle IA'I_a$ are equal.

2008 Postal Coaching, 5

Consider the triangle $ABC$ and the points $D \in (BC),E \in (CA), F \in (AB)$, such that $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}$. Prove that if the circumcenters of triangles $DEF$ and $ABC$ coincide, then the triangle $ABC$ is equilateral.

2019 Canada National Olympiad, 1

Points $A,B,C$ are on a plane such that $AB=BC=CA=6$. At any step, you may choose any three existing points and draw that triangle's circumcentre. Prove that you can draw a point such that its distance from an previously drawn point is: $(a)$ greater than 7 $(b)$ greater than 2019

2022 Bulgarian Spring Math Competition, Problem 9.2

Let $\triangle ABC$ have median $CM$ ($M\in AB$) and circumcenter $O$. The circumcircle of $\triangle AMO$ bisects $CM$. Determine the least possible perimeter of $\triangle ABC$ if it has integer side lengths.

2006 Cuba MO, 2

Let $U$ be the center of the circle inscribed in the triangle $ABC$, $O_1$, $O_2$ and $O_3$ the centers of the circles circumscribed by the triangles $BCU$, $CAU$ and $ABU$ respectively. Prove that the circles circumscribed around the triangles $ABC$ and $O_1O_2O_3$ have the same center.

2011 Tournament of Towns, 3

Three pairwise intersecting rays are given. At some point in time not on every ray from its beginning a point begins to move with speed. It is known that these three points form a triangle at any time, and the center of the circumscribed circle of this the triangle also moves uniformly and on a straight line. Is it true, that all these triangles are similar to each other?

2006 Sharygin Geometry Olympiad, 9.5

A straight line passing through the center of the circumscribed circle and the intersection point of the heights of the non-equilateral triangle $ABC$ divides its perimeter and area in the same ratio.Find this ratio.

2007 Sharygin Geometry Olympiad, 2

Points $A', B', C'$ are the feet of the altitudes $AA', BB'$ and $CC'$ of an acute triangle $ABC$. A circle with center $B$ and radius $BB'$ meets line $A'C'$ at points $K$ and $L$ (points $K$ and $A$ are on the same side of line $BB'$). Prove that the intersection point of lines $AK$ and $CL$ belongs to line $BO$ ($O$ is the circumcenter of triangle $ABC$).

2000 Estonia National Olympiad, 4

On the side $AC$ of the triangle $ABC$, choose any point $D$ different from the vertices $A$ and C. Let $O_1$ and $O_2$ be circumcenters the triangles $ABD$ and $CBD$, respectively. Prove that the triangles $O_1DO_2$ and $ABC$ are similar.

2019 Pan-African Shortlist, G4

Let $ABC$ be a triangle, and $D$, $E$, $F$ points on the segments $BC$, $CA$, and $AB$ respectively such that $$ \frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB}. $$ Show that if the centres of the circumscribed circles of the triangles $DEF$ and $ABC$ coincide, then $ABC$ is an equilateral triangle.

2020 China Northern MO, P2

In $\triangle ABC$, $AB>AC$. Let $O$ and $I$ be the circumcenter and incenter respectively. Prove that if $\angle AIO = 30^{\circ}$, then $\angle ABC = 60^{\circ}$.

Kyiv City MO Juniors 2003+ geometry, 2010.89.4

Point $O$ is the center of the circumcircle of the acute triangle $ABC$. The line $AO$ intersects the side $BC$ at point $D$ so that $OD = BD = 1/3 BC$ . Find the angles of the triangle $ABC$. Justify the answer.

2013 Czech-Polish-Slovak Junior Match, 5

Point $M$ is the midpoint of the side $AB$ of an acute triangle $ABC$. Point $P$ lies on the segment $AB$, and points $S_1$ and $S_2$ are the centers of the circumcircles of $APC$ and $BPC$, respectively. Show that the midpoint of segment $S_1S_2$ lies on the perpendicular bisector of segment $CM$.

2019 OMMock - Mexico National Olympiad Mock Exam, 6

Let $ABC$ be a scalene triangle with circumcenter $O$, and let $D$ and $E$ be points inside angle $\measuredangle BAC$ such that $A$ lies on line $DE$, and $\angle ADB=\angle CBA$ and $\angle AEC=\angle BCA$. Let $M$ be the midpoint of $BC$ and $K$ be a point such that $OK$ is perpendicular to $AO$ and $\angle BAK=\angle MAC$. Finally, let $P$ be the intersection of the perpendicular bisectors of $BD$ and $CE$. Show that $KO=KP$. [i]Proposed by Victor Domínguez[/i]

2009 Ukraine Team Selection Test, 5

Let $A,B,C,D,E$ be consecutive points on a circle with center $O$ such that $AC=BD=CE=DO$. Let $H_1,H_2,H_3$ be the orthocenters triangles $ACD,BCD,BCE$ respectively. Prove that the triangle $H_1H_2H_3$ is right.

2018 Saudi Arabia IMO TST, 1

Let $ABC$ be an acute, non isosceles triangle with $M, N, P$ are midpoints of $BC, CA, AB$, respectively. Denote $d_1$ as the line passes through $M$ and perpendicular to the angle bisector of $\angle BAC$, similarly define for $d_2, d_3$. Suppose that $d_2 \cap d_3 = D$, $d_3 \cap d_1 = E,$ $d_1 \cap d_2 = F$. Let $I, H$ be the incenter and orthocenter of triangle $ABC$. Prove that the circumcenter of triangle $DEF$ is the midpoint of segment $IH$.

2014 Ukraine Team Selection Test, 4

The $A$-excircle of the triangle $ABC$ touches the side $BC$ at point $K$. The circumcircles of triangles $AKB$ and $AKC$ intersect for the second time with the bisector of angle $A$ at points $X$ and $Y$ respectively. Let $M$ be the midpoint of $BC$. Prove that the circumcenter of triangle $XYM$ lies on $BC$.

2017 Thailand Mathematical Olympiad, 2

A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.

2013 Oral Moscow Geometry Olympiad, 5

In the acute-angled triangle $ABC$, let $AP$ and $BQ$ be the altitudes, $CM$ be the median . Point $R$ is the midpoint of $CM$. Line $PQ$ intersects line $AB$ at $T$. Prove that $OR \perp TC$, where $O$ is the center of the circumscribed circle of triangle $ABC$.

2018 Grand Duchy of Lithuania, 3

The altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at point $H$. Let $F$ be the intersection of the line $AB$ and the line that is parallel to the side BC and goes through the circumcenter of $ABC$. Let $M$ be the midpoint of the segment $AH$. Prove that $\angle CMF = 90^o$

1965 All Russian Mathematical Olympiad, 058

A circle is circumscribed around the triangle $ABC$. Chords, from the midpoint of the arc $AC$ to the midpoints of the arcs $AB$ and $BC$, intersect sides $[AB]$ and $[BC]$ in the points $D$ and $E$. Prove that $(DE)$ is parallel to $(AC)$ and passes through the centre of the inscribed circle.

2011 Sharygin Geometry Olympiad, 23

Given are triangle $ABC$ and line $\ell$ intersecting $BC, CA$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. Point $A'$ is the midpoint of the segment between the projections of $A_1$ to $AB$ and $AC$. Points $B'$ and $C'$ are defined similarly. (a) Prove that $A', B'$ and $C'$ lie on some line $\ell'$. (b) Suppose $\ell$ passes through the circumcenter of $\triangle ABC$. Prove that in this case $\ell'$ passes through the center of its nine-points circle. [i]M. Marinov and N. Beluhov[/i]