This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2011 Uzbekistan National Olympiad, 3

In acute triangle $ABC$ $AD$ is bisector. $O$ is circumcenter, $H$ is orthocenter. If $AD=AC$ and $AC\perp OH$ . Find all of the value of $\angle ABC$ and $\angle ACB$.

2009 AIME Problems, 15

In triangle $ ABC$, $ AB \equal{} 10$, $ BC \equal{} 14$, and $ CA \equal{} 16$. Let $ D$ be a point in the interior of $ \overline{BC}$. Let $ I_B$ and $ I_C$ denote the incenters of triangles $ ABD$ and $ ACD$, respectively. The circumcircles of triangles $ BI_BD$ and $ CI_CD$ meet at distinct points $ P$ and $ D$. The maximum possible area of $ \triangle BPC$ can be expressed in the form $ a\minus{}b\sqrt{c}$, where $ a$, $ b$, and $ c$ are positive integers and $ c$ is not divisible by the square of any prime. Find $ a\plus{}b\plus{}c$.

1987 IMO, 2

In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.

2002 Iran MO (3rd Round), 21

Excircle of triangle $ABC$ corresponding vertex $A$, is tangent to $BC$ at $P$. $AP$ intersects circumcircle of $ABC$ at $D$. Prove \[r(PCD)=r(PBD)\] whcih $r(PCD)$ and $r(PBD)$ are inradii of triangles $PCD$ and $PBD$.

1996 IMO Shortlist, 8

Let $ ABCD$ be a convex quadrilateral, and let $ R_A, R_B, R_C, R_D$ denote the circumradii of the triangles $ DAB, ABC, BCD, CDA,$ respectively. Prove that $ R_A \plus{} R_C > R_B \plus{} R_D$ if and only if $ \angle A \plus{} \angle C > \angle B \plus{} \angle D.$

2008 Germany Team Selection Test, 2

For three points $ X,Y,Z$ let $ R_{XYZ}$ be the circumcircle radius of the triangle $ XYZ.$ If $ ABC$ is a triangle with incircle centre $ I$ then we have: \[ \frac{1}{R_{ABI}} \plus{} \frac{1}{R_{BCI}} \plus{} \frac{1}{R_{CAI}} \leq \frac{1}{\bar{AI}} \plus{} \frac{1}{\bar{BI}} \plus{} \frac{1}{\bar{CI}}.\]

2005 Georgia Team Selection Test, 8

In a convex quadrilateral $ ABCD$ the points $ P$ and $ Q$ are chosen on the sides $ BC$ and $ CD$ respectively so that $ \angle{BAP}\equal{}\angle{DAQ}$. Prove that the line, passing through the orthocenters of triangles $ ABP$ and $ ADQ$, is perpendicular to $ AC$ if and only if the triangles $ ABP$ and $ ADQ$ have the same areas.

2000 Austrian-Polish Competition, 7

Triangle $A_0B_0C_0$ is given in the plane. Consider all triangles $ABC$ such that: (i) The lines $AB,BC,CA$ pass through $C_0,A_0,B_0$, respectvely, (ii) The triangles $ABC$ and $A_0B_0C_0$ are similar. Find the possible positions of the circumcenter of triangle $ABC$.

1972 AMC 12/AHSME, 23

[asy] draw((0,0)--(0,1)--(2,1)--(2,0)--cycle^^(.5,1)--(.5,2)--(1.5,2)--(1.5,1)--(.5,2)^^(.5,1)--(1.5,2)^^(1,2)--(1,0)); //Credit to Zimbalono for the diagram[/asy] The radius of the smallest circle containing the symmetric figure composed of the $3$ unit squares shown above is $\textbf{(A) }\sqrt{2}\qquad\textbf{(B) }\sqrt{1.25}\qquad\textbf{(C) }1.25\qquad\textbf{(D) }\frac{5\sqrt{17}}{16}\qquad \textbf{(E) }\text{None of these}$

1986 Balkan MO, 2

Let $ABCD$ be a tetrahedron and let $E,F,G,H,K,L$ be points lying on the edges $AB,BC,CD$ $,DA,DB,DC$ respectively, in such a way that \[AE \cdot BE = BF \cdot CF = CG \cdot AG= DH \cdot AH=DK \cdot BK=DL \cdot CL.\] Prove that the points $E,F,G,H,K,L$ all lie on a sphere.

1981 Vietnam National Olympiad, 1

Prove that a triangle $ABC$ is right-angled if and only if \[\sin A + \sin B + \sin C = \cos A + \cos B + \cos C + 1\]

2002 Iran Team Selection Test, 7

$S_{1},S_{2},S_{3}$ are three spheres in $\mathbb R^{3}$ that their centers are not collinear. $k\leq8$ is the number of planes that touch three spheres. $A_{i},B_{i},C_{i}$ is the point that $i$-th plane touch the spheres $S_{1},S_{2},S_{3}$. Let $O_{i}$ be circumcenter of $A_{i}B_{i}C_{i}$. Prove that $O_{i}$ are collinear.

2018 Ukraine Team Selection Test, 10

Let $ABC$ be a triangle with $AH$ altitude. The point $K$ is chosen on the segment $AH$ as follows such that $AH =3KH$. Let $O$ be the center of the circle circumscribed around by triangle $ABC, M$ and $N$ be the midpoints of $AC$ and AB respectively. Lines $KO$ and $MN$ intersect at the point $Z$, a perpendicular to $OK$ passing through point $Z$ intersects lines $AC$ and $AB$ at points $X$ and $Y$ respectively. Prove that $\angle XKY =\angle CKB$.

2015 Sharygin Geometry Olympiad, 6

Let $H$ and $O$ be the orthocenter and the circumcenter of triangle $ABC$. The circumcircle of triangle $AOH$ meets the perpendicular bisector of $BC$ at point $A_1 \neq O$. Points $B_1$ and $C_1$ are defined similarly. Prove that lines $AA_1$, $BB_1$ and $CC_1$ concur.

2021 Korea - Final Round, P5

The incenter and $A$-excenter of $\triangle{ABC}$ is $I$ and $O$. The foot from $A,I$ to $BC$ is $D$ and $E$. The intersection of $AD$ and $EO$ is $X$. The circumcenter of $\triangle{BXC}$ is $P$. Show that the circumcircle of $\triangle{BPC}$ is tangent to the $A$-excircle if $X$ is on the incircle of $\triangle{ABC}$.

2003 Italy TST, 1

The incircle of a triangle $ABC$ touches the sides $AB,BC,CA$ at points $D,E,F$ respectively. The line through $A$ parallel to $DF$ meets the line through $C$ parallel to $EF$ at $G$. $(a)$ Prove that the quadrilateral $AICG$ is cyclic. $(b)$ Prove that the points $B,I,G$ are collinear.

2019 SAFEST Olympiad, 1

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $AD$ be the diameter of the circumcircle of $ABC$ and let $P$ be a point on the smaller arc $BD$. The line $DP$ intersects the rays $AB$ and $AC$ at points $M$ and $N$, respectively. The line $AD$ intersects the lines $BP$ and $CP$ at points $Q$ and $R$, respectively. Prove that the midpoint of $MN$ lies on the circumcircle of $PQR$

2008 Iran MO (3rd Round), 3

Let $ P$ be a regular polygon. A regular sub-polygon of $ P$ is a subset of vertices of $ P$ with at least two vertices such that divides the circumcircle to equal arcs. Prove that there is a subset of vertices of $ P$ such that its intersection with each regular sub-polygon has even number of vertices.

2012 Iran Team Selection Test, 3

Let $O$ be the circumcenter of the acute triangle $ABC$. Suppose points $A',B'$ and $C'$ are on sides $BC,CA$ and $AB$ such that circumcircles of triangles $AB'C',BC'A'$ and $CA'B'$ pass through $O$. Let $\ell_a$ be the radical axis of the circle with center $B'$ and radius $B'C$ and circle with center $C'$ and radius $C'B$. Define $\ell_b$ and $\ell_c$ similarly. Prove that lines $\ell_a,\ell_b$ and $\ell_c$ form a triangle such that it's orthocenter coincides with orthocenter of triangle $ABC$. [i]Proposed by Mehdi E'tesami Fard[/i]

2006 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in the plane of $ABC$ that is inside the region of the angle $BAC$ but outside triangle $ABC$. [b](a)[/b] Prove that any two of the following statements imply the third. [list] [b](i)[/b] the circumcentre of triangle $PBC$ lies on the ray $\stackrel{\to}{PA}$. [b](ii)[/b] the circumcentre of triangle $CPA$ lies on the ray $\stackrel{\to}{PB}$. [b](iii)[/b] the circumcentre of triangle $APB$ lies on the ray $\stackrel{\to}{PC}$.[/list] [b](b)[/b] Prove that if the conditions in (a) hold, then the circumcentres of triangles $BPC,CPA$ and $APB$ lie on the circumcircle of triangle $ABC$.

2015 All-Russian Olympiad, 2

Given is a parallelogram $ABCD$, with $AB <AC <BC$. Points $E$ and $F$ are selected on the circumcircle $\omega$ of $ABC$ so that the tangenst to $\omega$ at these points pass through point $D$ and the segments $AD$ and $CE$ intersect. It turned out that $\angle ABF = \angle DCE$. Find the angle $\angle{ABC}$. A. Yakubov, S. Berlov

2013 ELMO Shortlist, 12

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$. [i]Proposed by David Stoner[/i]

2015 Dutch BxMO/EGMO TST, 4

In a triangle $ABC$ the point $D$ is the intersection of the interior angle bisector of $\angle BAC$ and side $BC$. Let $P$ be the second intersection point of the exterior angle bisector of $\angle BAC$ with the circumcircle of $\angle ABC$. A circle through $A$ and $P$ intersects line segment $BP$ internally in $E$ and line segment $CP$ internally in $F$. Prove that $\angle DEP = \angle DFP$.

2013 EGMO, 1

The side $BC$ of the triangle $ABC$ is extended beyond $C$ to $D$ so that $CD = BC$. The side $CA$ is extended beyond $A$ to $E$ so that $AE = 2CA$. Prove that, if $AD=BE$, then the triangle $ABC$ is right-angled.

2003 Croatia Team Selection Test, 2

Let $B$ be a point on a circle $k_1, A \ne B$ be a point on the tangent to the circle at $B$, and $C$ a point not lying on $k_1$ for which the segment $AC$ meets $k_1$ at two distinct points. Circle $k_2$ is tangent to line $AC$ at $C$ and to $k_1$ at point $D$, and does not lie in the same half-plane as $B$. Prove that the circumcenter of triangle $BCD$ lies on the circumcircle of $\vartriangle ABC$