This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2007 Bosnia and Herzegovina Junior BMO TST, 4

Let $I$ be the incenter of the triangle $ABC$ ($AB < BC$). Let $M$ be the midpoint of $AC$, and let $N$ be the midpoint of the arc $AC$ of the circumcircle of $ABC$ which contains $B$. Prove that $\angle IMA = \angle INB$.

2023 Kyiv City MO Round 1, Problem 3

You are given a right triangle $ABC$ with $\angle ACB = 90^\circ$. Let $W_A , W_B$ respectively be the midpoints of the smaller arcs $BC$ and $AC$ of the circumcircle of $\triangle ABC$, and $N_A , N_B$ respectively be the midpoints of the larger arcs $BC$ and $AC$ of this circle. Denote by $P$ and $Q$ the points of intersection of segment $AB$ with the lines $N_AW_B$ and $N_BW_A$, respectively. Prove that $AP = BQ$. [i]Proposed by Oleksiy Masalitin[/i]

2017 Iberoamerican, 2

Let $ABC$ be an acute angled triangle and $\Gamma$ its circumcircle. Led $D$ be a point on segment $BC$, different from $B$ and $C$, and let $M$ be the midpoint of $AD$. The line perpendicular to $AB$ that passes through $D$ intersects $AB$ in $E$ and $\Gamma$ in $F$, with point $D$ between $E$ and $F$. Lines $FC$ and $EM$ intersect at point $X$. If $\angle DAE = \angle AFE$, show that line $AX$ is tangent to $\Gamma$.

2012 China Western Mathematical Olympiad, 1

$O$ is the circumcenter of acute $\Delta ABC$, $H$ is the Orthocenter. $AD \bot BC$, $EF$ is the perpendicular bisector of $AO$,$D,E$ on the $BC$. Prove that the circumcircle of $\Delta ADE$ through the midpoint of $OH$.

2014 Baltic Way, 12

Triangle $ABC$ is given. Let $M$ be the midpoint of the segment $AB$ and $T$ be the midpoint of the arc $BC$ not containing $A$ of the circumcircle of $ABC.$ The point $K$ inside the triangle $ABC$ is such that $MATK$ is an isosceles trapezoid with $AT\parallel MK.$ Show that $AK = KC.$

2016 Iran MO (3rd Round), 2

Given $\triangle ABC$ inscribed in $(O)$ an let $I$ and $I_a$ be it's incenter and $A$-excenter ,respectively. Tangent lines to $(O)$ at $C,B$ intersect the angle bisector of $A$ at $M,N$ ,respectively. Second tangent lines through $M,N$ intersect $(O)$ at $X,Y$. Prove that $XYII_a$ is cyclic.

2015 Germany Team Selection Test, 2

Let $ABC$ be an acute triangle with the circumcircle $k$ and incenter $I$. The perpendicular through $I$ in $CI$ intersects segment $[BC]$ in $U$ and $k$ in $V$. In particular $V$ and $A$ are on different sides of $BC$. The parallel line through $U$ to $AI$ intersects $AV$ in $X$. Prove: If $XI$ and $AI$ are perpendicular to each other, then $XI$ intersects segment $[AC]$ in its midpoint $M$. [i](Notation: $[\cdot]$ denotes the line segment.)[/i]

2011 China Team Selection Test, 1

Let $AA',BB',CC'$ be three diameters of the circumcircle of an acute triangle $ABC$. Let $P$ be an arbitrary point in the interior of $\triangle ABC$, and let $D,E,F$ be the orthogonal projection of $P$ on $BC,CA,AB$, respectively. Let $X$ be the point such that $D$ is the midpoint of $A'X$, let $Y$ be the point such that $E$ is the midpoint of $B'Y$, and similarly let $Z$ be the point such that $F$ is the midpoint of $C'Z$. Prove that triangle $XYZ$ is similar to triangle $ABC$.

1993 Balkan MO, 3

Circles $\mathcal C_1$ and $\mathcal C_2$ with centers $O_1$ and $O_2$, respectively, are externally tangent at point $\lambda$. A circle $\mathcal C$ with center $O$ touches $\mathcal C_1$ at $A$ and $\mathcal C_2$ at $B$ so that the centers $O_1$, $O_2$ lie inside $C$. The common tangent to $\mathcal C_1$ and $\mathcal C_2$ at $\lambda$ intersects the circle $\mathcal C$ at $K$ and $L$. If $D$ is the midpoint of the segment $KL$, show that $\angle O_1OO_2 = \angle ADB$. [i]Greece[/i]

2019 Greece Junior Math Olympiad, 2

Let $ABCD$ be a quadrilateral inscribed in circle of center $O$. The perpendicular on the midpoint $E$ of side $BC$ intersects line $AB$ at point $Z$. The circumscribed circle of the triangle $CEZ$, intersects the side $AB$ for the second time at point $H$ and line $CD$ at point $G$ different than $D$. Line $EG$ intersects line $AD$ at point $K$ and line $CH$ at point $L$. Prove that the points $A,H,L,K$ are concyclic, e.g. lie on the same circle.

Estonia Open Junior - geometry, 1999.2.3

On the plane there are two non-intersecting circles with equal radii and with centres $O_1$ and $O_2$, line $s$ going through these centres, and their common tangent $t$. The third circle is tangent to these two circles in points $K$ and $L$ respectively, line $s$ in point $M$ and line $t$ in point $P$. The point of tangency of line $t$ and the first circle is $N$. a) Find the length of the segment $O_1O_2$. b) Prove that the points $M, K$ and $N$ lie on the same line

IV Soros Olympiad 1997 - 98 (Russia), 10.9

In triangle $ABC$, side $BC$ is equal to $a$, and the angles of the triangle adjacent to it are equal to $\alpha$ and $\beta$. A circle passing through points $A $and $B$ intersects lines $CA$ and $CB$ for second time at points $ P$ and $M$. It is known that straight line $RM$ passes through the center of the circle circumscribed around $ABC$. Find the length of the segment $PM$

2008 Harvard-MIT Mathematics Tournament, 6

Let $ ABC$ be a triangle with $ \angle A \equal{} 45^\circ$. Let $ P$ be a point on side $ BC$ with $ PB \equal{} 3$ and $ PC \equal{} 5$. Let $ O$ be the circumcenter of $ ABC$. Determine the length $ OP$.

2023 Iran MO (3rd Round), 3

In triangle $\triangle ABC$ points $M,N$ lie on $BC$ st : $\angle BAM= \angle MAN= \angle NAC$ . Points $P,Q$ are on the angle bisector of $BAC$, on the same side of $BC$ as A , st : $$\frac{1}{3} \angle BAC = \frac{1}{2} \angle BPC = \angle BQC$$ Let $E = AM \cap CQ$ and $F = AN \cap BQ$ . Prove that the common tangents to $(EPF), (EQF)$ and the circumcircle of $\triangle ABC$ , are concurrent.

2019 Thailand Mathematical Olympiad, 1

Let $ABCDE$ be a convex pentagon with $\angle AEB=\angle BDC=90^o$ and line $AC$ bisects $\angle BAE$ and $\angle DCB$ internally. The circumcircle of $ABE$ intersects line $AC$ again at $P$. (a) Show that $P$ is the circumcenter of $BDE$. (b) Show that $A, C, D, E$ are concyclic.

2004 Tournament Of Towns, 1

Let us call a triangle rational if each of its angles is a rational number when measured in degrees. Let us call a point inside triangle rational if joining it to the three vertices of the triangle we get three rational triangles. Show that any acute rational triangle contains at least three distinct rational points.

2016 Croatia Team Selection Test, Problem 3

Let $ABC$ be an acute triangle with circumcenter $O$. Points $E$ and $F$ are chosen on segments $OB$ and $OC$ such that $BE = OF$. If $M$ is the midpoint of the arc $EOA$ and $N$ is the midpoint of the arc $AOF$, prove that $\sphericalangle ENO + \sphericalangle OMF = 2 \sphericalangle BAC$.

2009 Croatia Team Selection Test, 3

It is given a convex quadrilateral $ ABCD$ in which $ \angle B\plus{}\angle C < 180^0$. Lines $ AB$ and $ CD$ intersect in point E. Prove that $ CD*CE\equal{}AC^2\plus{}AB*AE \leftrightarrow \angle B\equal{} \angle D$

2013 Brazil National Olympiad, 6

The incircle of triangle $ABC$ touches sides $BC, CA$ and $AB$ at points $D, E$ and $F$, respectively. Let $P$ be the intersection of lines $AD$ and $BE$. The reflections of $P$ with respect to $EF, FD$ and $DE$ are $X,Y$ and $Z$, respectively. Prove that lines $AX, BY$ and $CZ$ are concurrent at a point on line $IO$, where $I$ and $O$ are the incenter and circumcenter of triangle $ABC$.

2009 Serbia National Math Olympiad, 6

Triangle ABC has incircle w centered as S that touches the sides BC,CA and AB at P,Q and R respectively. AB isn't equal AC, the lines QR and BC intersects at point M, the circle that passes through points B and C touches the circle w at point N, circumcircle of triangle MNP intersects with line AP at L (L isn't equal to P). Then prove that S,L and M lie on the same line

1999 Vietnam National Olympiad, 2

let a triangle ABC and A',B',C' be the midpoints of the arcs BC,CA,AB respectively of its circumcircle. A'B',A'C' meets BC at $ A_1,A_2$ respectively. Pairs of point $ (B_1,B_2),(C_1,C_2)$ are similarly defined. Prove that $ A_1A_2 \equal{} B_1B_2 \equal{} C_1C_2$ if and only if triangle ABC is equilateral.

2008 Sharygin Geometry Olympiad, 7

(A.Zaslavsky) The circumradius of triangle $ ABC$ is equal to $ R$. Another circle with the same radius passes through the orthocenter $ H$ of this triangle and intersect its circumcirle in points $ X$, $ Y$. Point $ Z$ is the fourth vertex of parallelogram $ CXZY$. Find the circumradius of triangle $ ABZ$.

2010 Regional Olympiad of Mexico Center Zone, 1

In the acute triangle $ABC$, $\angle BAC$ is less than $\angle ACB $. Let $AD$ be a diameter of $\omega$, the circle circumscribed to said triangle. Let $E$ be the point of intersection of the ray $AC$ and the tangent to $\omega$ passing through $B$. The perpendicular to $AD$ that passes through $E$ intersects the circle circumscribed to the triangle $BCE$, again, at the point $F$. Show that $CD$ is an angle bisector of $\angle BCF$.

2010 Contests, 3

The circle $ \Gamma $ is inscribed to the scalene triangle $ABC$. $ \Gamma $ is tangent to the sides $BC, CA$ and $AB$ at $D, E$ and $F$ respectively. The line $EF$ intersects the line $BC$ at $G$. The circle of diameter $GD$ intersects $ \Gamma $ in $R$ ($ R\neq D $). Let $P$, $Q$ ($ P\neq R , Q\neq R $) be the intersections of $ \Gamma $ with $BR$ and $CR$, respectively. The lines $BQ$ and $CP$ intersects at $X$. The circumcircle of $CDE$ meets $QR$ at $M$, and the circumcircle of $BDF$ meet $PR$ at $N$. Prove that $PM$, $QN$ and $RX$ are concurrent. [i]Author: Arnoldo Aguilar, El Salvador[/i]

2011 Bulgaria National Olympiad, 1

Point $O$ is inside $\triangle ABC$. The feet of perpendicular from $O$ to $BC,CA,AB$ are $D,E,F$. Perpendiculars from $A$ and $B$ respectively to $EF$ and $FD$ meet at $P$. Let $H$ be the foot of perpendicular from $P$ to $AB$. Prove that $D,E,F,H$ are concyclic.