This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2003 Germany Team Selection Test, 2

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

Champions Tournament Seniors - geometry, 2015.3

Given a triangle $ABC$. Let $\Omega$ be the circumscribed circle of this triangle, and $\omega$ be the inscribed circle of this triangle. Let $\delta$ be a circle that touches the sides $AB$ and $AC$, and also touches the circle $\Omega$ internally at point $D$. The line $AD$ intersects the circle $\Omega$ at two points $P$ and $Q$ ($P$ lies between $A$ and $Q$). Let $O$ and $I$ be the centers of the circles $\Omega$ and $\omega$. Prove that $OD \parallel IQ$.

2012 ELMO Shortlist, 2

In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$. a) Prove $SX,TY, AD$ are concurrent at a point $Z$. b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$. [i]Ray Li.[/i]

1997 Kurschak Competition, 2

The center of the circumcircle of $\triangle ABC$ is $O$. The incenter of the triangle is $I$, and the intouch triangle is $A_1B_1C_1$. Let $H_1$ be the orthocenter of $\triangle A_1B_1C_1$. Prove that $O$, $I$, and $H_1$ are collinear.

2018 Saudi Arabia IMO TST, 2

Let $ABC$ be an acute-angled triangle inscribed in circle $(O)$. Let $G$ be a point on the small arc $AC$ of $(O)$ and $(K)$ be a circle passing through $A$ and $G$. Bisector of $\angle BAC$ cuts $(K)$ again at $P$. The point $E$ is chosen on $(K)$ such that $AE$ is parallel to $BC$. The line $PK$ meets the perpendicular bisector of $BC$ at $F$. Prove that $\angle EGF = 90^o$.

2021 Sharygin Geometry Olympiad, 4

Let $ABCD$ be a square with center $O$ , and $P$ be a point on the minor arc $CD$ of its circumcircle. The tangents from $P$ to the incircle of the square meet $CD$ at points $M$ and $N$. The lines $PM$ and $PN$ meet segments $BC$ and $AD$ respectively at points $Q$ and $R$. Prove that the median of triangle $OMN$ from $O$ is perpendicular to the segment $QR$ and equals to its half.

2006 IMO Shortlist, 2

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2004 India IMO Training Camp, 1

A set $A_1 , A_2 , A_3 , A_4$ of 4 points in the plane is said to be [i]Athenian[/i] set if there is a point $P$ of the plane satsifying (*) $P$ does not lie on any of the lines $A_i A_j$ for $1 \leq i < j \leq 4$; (**) the line joining $P$ to the mid-point of the line $A_i A_j$ is perpendicular to the line joining $P$ to the mid-point of $A_k A_l$, $i,j,k,l$ being distinct. (a) Find all [i]Athenian[/i] sets in the plane. (b) For a given [i]Athenian[/i] set, find the set of all points $P$ in the plane satisfying (*) and (**)

2013 IMAC Arhimede, 5

Let $\Gamma$ be the circumcircle of a triangle $ABC$ and let $E$ and $F$ be the intersections of the bisectors of $\angle ABC$ and $\angle ACB$ with $\Gamma$. If $EF$ is tangent to the incircle $\gamma$ of $\triangle ABC$, then find the value of $\angle BAC$.

2006 Iran Team Selection Test, 3

Let $l,m$ be two parallel lines in the plane. Let $P$ be a fixed point between them. Let $E,F$ be variable points on $l,m$ such that the angle $EPF$ is fixed to a number like $\alpha$ where $0<\alpha<\frac{\pi}2$. (By angle $EPF$ we mean the directed angle) Show that there is another point (not $P$) such that it sees the segment $EF$ with a fixed angle too.

2008 Regional Competition For Advanced Students, 3

Given is an acute angled triangle $ ABC$. Determine all points $ P$ inside the triangle with \[1\leq\frac{\angle APB}{\angle ACB},\frac{\angle BPC}{\angle BAC},\frac{\angle CPA}{\angle CBA}\leq2\]

2010 China Girls Math Olympiad, 6

In acute triangle $ABC$, $AB > AC$. Let $M$ be the midpoint of side $BC$. The exterior angle bisector of $\widehat{BAC}$ meet ray $BC$ at $P$. Point $K$ and $F$ lie on line $PA$ such that $MF \perp BC$ and $MK \perp PA$. Prove that $BC^2 = 4 PF \cdot AK$. [asy] defaultpen(fontsize(10)); size(7cm); pair A = (4.6,4), B = (0,0), C = (5,0), M = midpoint(B--C), I = incenter(A,B,C), P = extension(A, A+dir(I--A)*dir(-90), B,C), K = foot(M,A,P), F = extension(M, (M.x, M.x+1), A,P); draw(K--M--F--P--B--A--C); pair point = I; pair[] p={A,B,C,M,P,F,K}; string s = "A,B,C,M,P,F,K"; int size = p.length; real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;} string[] k= split(s,","); for(int i = 0;i<p.length;++i) { label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i])); }[/asy]

2017 Korea National Olympiad, problem 3

Let there be a scalene triangle $ABC$, and its incircle hits $BC, CA, AB$ at $D, E, F$. The perpendicular bisector of $BC$ meets the circumcircle of $ABC$ at $P, Q$, where $P$ is on the same side with $A$ with respect to $BC$. Let the line parallel to $AQ$ and passing through $D$ meet $EF$ at $R$. Prove that the intersection between $EF$ and $PQ$ lies on the circumcircle of $BCR$.

2019 Centroamerican and Caribbean Math Olympiad, 3

Let $ABC$ be a triangle and $\Gamma$ its circumcircle. Let $D$ be the foot of the altitude from $A$ to the side $BC$, $M$ and $N$ the midpoints of $AB$ and $AC$, and $Q$ the point on $\Gamma$ diametrically opposite to $A$. Let $E$ be the midpoint of $DQ$. Show that the lines perpendicular to $EM$ and $EN$ passing through $M$ and $N$, respectively, meet on $AD$.

2017 Flanders Math Olympiad, 2

In triangle $\vartriangle ABC$, $\angle A = 50^o, \angle B = 60^o$ and $\angle C = 70^o$. The point $P$ is on the side $[AB]$ (with $P \ne A$ and $P \ne B$). The inscribed circle of $\vartriangle ABC$ intersects the inscribed circle of $\vartriangle ACP$ at points $U$ and $V$ and intersects the inscribed circle of $\vartriangle BCP$ at points $X$ and $Y$. The rights $UV$ and $XY$ intersect in $K$. Calculate the $\angle UKX$.

2012 Sharygin Geometry Olympiad, 1

In triangle $ABC$ point $M$ is the midpoint of side $AB$, and point $D$ is the foot of altitude $CD$. Prove that $\angle A = 2\angle B$ if and only if $AC = 2 MD$.

2011 Costa Rica - Final Round, 1

Let $ABC$ be a triangle with orthocenter $H$. Let $P,Q,R$ be the reflections of $H$ with respect to sides $BC,AC,AB$, respectively. Show that $H$ is incenter of $PQR$.

2008 Baltic Way, 18

Let $ AB$ be a diameter of a circle $ S$, and let $ L$ be the tangent at $ A$. Furthermore, let $ c$ be a fixed, positive real, and consider all pairs of points $ X$ and $ Y$ lying on $ L$, on opposite sides of $ A$, such that $ |AX|\cdot |AY| \equal{} c$. The lines $ BX$ and $ BY$ intersect $ S$ at points $ P$ and $ Q$, respectively. Show that all the lines $ PQ$ pass through a common point.

2016 Swedish Mathematical Competition, 3

The quadrilateral $ABCD$ is an isosceles trapezoid, where $AB\parallel CD$. The trapezoid is inscribed in a circle with radius $R$ and center on side $AB$. Point $E$ lies on the circumscribed circle and is such that $\angle DAE = 90^o$. Given that $\frac{AE}{AB}=\frac34$, calculate the length of the sides of the isosceles trapezoid.

2018 Polish Junior MO Second Round, 2

Let $ABC$ be an acute traingle with $AC \neq BC$. Point $K$ is a foot of altitude through vertex $C$. Point $O$ is a circumcenter of $ABC$. Prove that areas of quadrilaterals $AKOC$ and $BKOC$ are equal.

2001 Tuymaada Olympiad, 3

$ABCD$ is a convex quadrilateral; half-lines $DA$ and $CB$ meet at point $Q$; half-lines $BA$ and $CD$ meet at point $P$. It is known that $\angle AQB=\angle APD$. The bisector of angle $\angle AQB$ meets the sides $AB$ and $CD$ of the quadrilateral at points $X$ and $Y$, respectively; the bisector of angle $\angle APD$ meets the sides $AD$ and $BC$ at points $Z$ and $T$, respectively. The circumcircles of triangles $ZQT$ and $XPY$ meet at point $K$ inside the quadrilateral. Prove that $K$ lies on the diagonal $AC$. [i]Proposed by S. Berlov[/i]

2024 Thailand October Camp, 4

Let $ABC$ be an acute triangle with altitudes $AD,BE$ and $CF$. Denote $\omega_1,\omega_2$ the circumcircles of $\triangle AEB, \triangle AFC$, respectively. Suppose the line through $A$ parallel to $EF$ intersects $\omega_1$ and $\omega_2$ at $P$ and $Q$, respectively. Show that the circumcenter of $\triangle PQD$ lies on $AD$

2018 Balkan MO Shortlist, G5

Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide. by Evangelos Psychas, Greece

2015 Baltic Way, 14

In the non-isosceles triangle $ABC$ an altitude from $A$ meets side $BC$ in $D$ . Let $M$ be the midpoint of $BC$ and let $N$ be the reflection of $M$ in $D$ . The circumcirle of triangle $AMN$ intersects the side $AB$ in $P\ne A$ and the side $AC$ in $Q\ne A$ . Prove that $AN,BQ$ and $CP$ are concurrent.

JOM 2025, 3

Let $\triangle MAB$ be a triangle with circumcenter $O$. $P$ and $Q$ lie on line $AB$ (both interior or exterior) such that $\angle PMA = \angle BMQ$. Let $D$ be a point on the perpendicular line through $M$ to $AB$. $E$ is the second intersection of the two circles $(DAB)$ and $(DPQ)$. The line $MO$ intersects $AB$ at $J$. Show that the circumcenter of $\triangle EMJ$ lies on line $AB$. [i](Proposed by Tan Rui Xuen)[/i]