Found problems: 3882
1990 Vietnam National Olympiad, 1
A triangle $ ABC$ is given in the plane. Let $ M$ be a point inside the triangle and $ A'$, $ B'$, $ C'$ be its projections on the sides $ BC$, $ CA$, $ AB$, respectively. Find the locus of $ M$ for which $ MA \cdot MA' \equal{} MB \cdot MB' \equal{} MC \cdot MC'$.
2004 Germany Team Selection Test, 3
Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that
\[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \]
[i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$.
Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$.
[i]Proposed by Dirk Laurie, South Africa[/i]
2002 Italy TST, 1
Given that in a triangle $ABC$, $AB=3$, $BC=4$ and the midpoints of the altitudes of the triangle are collinear, find all possible values of the length of $AC$.
2005 Rioplatense Mathematical Olympiad, Level 3, 1
Let $P$ be a point inside triangle $ABC$ and let $R$ denote the circumradius of triangle $ABC$. Prove that
\[ \frac{PA}{AB\cdot AC}+\frac{PB}{BC\cdot BA}+\frac{PC}{CA\cdot CB}\ge\frac{1}{R}.\]
2014 France Team Selection Test, 5
Let $\omega$ be the circumcircle of a triangle $ABC$. Denote by $M$ and $N$ the midpoints of the sides $AB$ and $AC$, respectively, and denote by $T$ the midpoint of the arc $BC$ of $\omega$ not containing $A$. The circumcircles of the triangles $AMT$ and $ANT$ intersect the perpendicular bisectors of $AC$ and $AB$ at points $X$ and $Y$, respectively; assume that $X$ and $Y$ lie inside the triangle $ABC$. The lines $MN$ and $XY$ intersect at $K$. Prove that $KA=KT$.
2008 Macedonia National Olympiad, 3
An acute triangle $ ABC$ with $ AB \neq AC$ is given. Let $ V$ and $ D$ be the feet of the altitude and angle bisector from $ A$, and let $ E$ and $ F$ be the intersection points of the circumcircle of $ \triangle AVD$ with sides $ AC$ and $ AB$, respectively. Prove that $ AD$, $ BE$ and $ CF$ have a common point.
2017 Cono Sur Olympiad, 4
Let $ABC$ an acute triangle with circumcenter $O$. Points $X$ and $Y$ are chosen such that:
[list]
[*]$\angle XAB = \angle YCB = 90^\circ$[/*]
[*]$\angle ABC = \angle BXA = \angle BYC$[/*]
[*]$X$ and $C$ are in different half-planes with respect to $AB$[/*]
[*]$Y$ and $A$ are in different half-planes with respect to $BC$[/*]
[/list]
Prove that $O$ is the midpoint of $XY$.
2007 Tournament Of Towns, 1
Let $ABCD$ be a rhombus. Let $K$ be a point on the line $CD$, other than $C$ or $D$, such that $AD = BK$. Let $P$ be the point of intersection of $BD$ with the perpendicular bisector of $BC$. Prove that $A, K$ and $P$ are collinear.
2012 USA Team Selection Test, 1
In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.
2013 NIMO Problems, 6
Let $ABC$ be a triangle with $AB = 42$, $AC = 39$, $BC = 45$. Let $E$, $F$ be on the sides $\overline{AC}$ and $\overline{AB}$ such that $AF = 21, AE = 13$. Let $\overline{CF}$ and $\overline{BE}$ intersect at $P$, and let ray $AP$ meet $\overline{BC}$ at $D$. Let $O$ denote the circumcenter of $\triangle DEF$, and $R$ its circumradius. Compute $CO^2-R^2$.
[i]Proposed by Yang Liu[/i]
2003 All-Russian Olympiad Regional Round, 10.6
Let $A_0$ be the midpoint of side $BC$ of triangle $ABC$, and $A'$ be the point of tangency with this side of the inscribed circle. Let's construct a circle $ \omega$ with center at $A_0$ and passing through $A'$. On other sides we will construct similar circles. Prove that if $ \omega$ is tangent to the cirucmscribed circle on arc $BC$ not containing $A$, then another one of the constructed circles touches the circumcircle.
2013 Czech-Polish-Slovak Junior Match, 4
Let $ABCD$ be a convex quadrilateral with $\angle DAB =\angle ABC =\angle BCD > 90^o$. The circle circumscribed around the triangle $ABC$ intersects the sides $AD$ and $CD$ at points $K$ and $L$, respectively, different from any vertex of the quadrilateral $ABCD$ . Segments $AL$ and $CK$ intersect at point $P$. Prove that $\angle ADB =\angle PDC$.
1999 National Olympiad First Round, 21
$ ABC$ is a triangle with $ \angle BAC \equal{} 10{}^\circ$, $ \angle ABC \equal{} 150{}^\circ$. Let $ X$ be a point on $ \left[AC\right]$ such that $ \left|AX\right| \equal{} \left|BC\right|$. Find $ \angle BXC$.
$\textbf{(A)}\ 15^\circ \qquad\textbf{(B)}\ 20^\circ \qquad\textbf{(C)}\ 25^\circ \qquad\textbf{(D)}\ 30^\circ \qquad\textbf{(E)}\ 35^\circ$
2011 Kazakhstan National Olympiad, 2
Let $w$-circumcircle of triangle $ABC$ with an obtuse angle $C$ and $C '$symmetric point of point $C$ with respect to $AB$. $M$ midpoint of $AB$. $C'M$ intersects $w$ at $N$ ($C '$ between $M$ and $N$). Let $BC'$ second crossing point $w$ in $F$, and $AC'$ again crosses the $w$ at point $E$. $K$-midpoint $EF$. Prove that the lines $AB, CN$ and$ KC'$are concurrent.
2010 ISI B.Math Entrance Exam, 10
Consider a regular heptagon ( polygon of $7$ equal sides and angles) $ABCDEFG$ as in the figure below:-
$(a).$ Prove $\frac{1}{\sin\frac{\pi}{7}}=\frac{1}{\sin\frac{2\pi}{7}}+\frac{1}{\sin\frac{3\pi}{7}}$
$(b).$ Using $(a)$ or otherwise, show that $\frac{1}{AG}=\frac{1}{AF}+\frac{1}{AE}$
[asy]
draw(dir(360/7)..dir(2*360/7),blue);
draw(dir(2*360/7)..dir(3*360/7),blue);
draw(dir(3*360/7)..dir(4*360/7),blue);
draw(dir(4*360/7)..dir(5*360/7),blue);
draw(dir(5*360/7)..dir(6*360/7),blue);
draw(dir(6*360/7)..dir(7*360/7),blue);
draw(dir(7*360/7)..dir(360/7),blue);
draw(dir(2*360/7)..dir(4*360/7),blue);
draw(dir(4*360/7)..dir(1*360/7),blue);
label("$A$",dir(4*360/7),W);
label("$B$",dir(5*360/7),S);
label("$C$",dir(6*360/7),S);
label("$D$",dir(7*360/7),E);
label("$E$",dir(1*360/7),E);
label("$F$",dir(2*360/7),N);
label("$G$",dir(3*360/7),W);
[/asy]
2014 All-Russian Olympiad, 4
Given a triangle $ABC$ with $AB>BC$, $ \Omega $ is circumcircle. Let $M$, $N$ are lie on the sides $AB$, $BC$ respectively, such that $AM=CN$. $K(.)=MN\cap AC$ and $P$ is incenter of the triangle $AMK$, $Q$ is K-excenter of the triangle $CNK$ (opposite to $K$ and tangents to $CN$). If $R$ is midpoint of the arc $ABC$ of $ \Omega $ then prove that $RP=RQ$.
M. Kungodjin
2020 Taiwan TST Round 1, 2
Let point $H$ be the orthocenter of a scalene triangle $ABC$. Line $AH$ intersects with the circumcircle $\Omega$ of triangle $ABC$ again at point $P$. Line $BH, CH$ meets with $AC,AB$ at point $E$ and $F$, respectively. Let $PE, PF$ meet $\Omega$ again at point $Q,R$, respectively. Point $Y$ lies on $\Omega$ so that lines $AY,QR$ and $EF$ are concurrent. Prove that $PY$ bisects $EF$.
2008 China National Olympiad, 1
Suppose $\triangle ABC$ is scalene. $O$ is the circumcenter and $A'$ is a point on the extension of segment $AO$ such that $\angle BA'A = \angle CA'A$. Let point $A_1$ and $A_2$ be foot of perpendicular from $A'$ onto $AB$ and $AC$. $H_{A}$ is the foot of perpendicular from $A$ onto $BC$. Denote $R_{A}$ to be the radius of circumcircle of $\triangle H_{A}A_1A_2$. Similiarly we can define $R_{B}$ and $R_{C}$. Show that:
\[\frac{1}{R_{A}} + \frac{1}{R_{B}} + \frac{1}{R_{C}} = \frac{2}{R}\]
where R is the radius of circumcircle of $\triangle ABC$.
1987 IMO Longlists, 5
Let there be given three circles $K_1,K_2,K_3$ with centers $O_1,O_2,O_3$ respectively, which meet at a common point $P$. Also, let $K_1 \cap K_2 = \{P,A\}, K_2 \cap K_3 = \{P,B\}, K_3 \cap K_1 = \{P,C\}$. Given an arbitrary point $X$ on $K_1$, join $X$ to $A$ to meet $K_2$ again in $Y$ , and join $X$ to $C$ to meet $K_3$ again in $Z.$
[b](a)[/b] Show that the points $Z,B, Y$ are collinear.
[b](b)[/b] Show that the area of triangle $XY Z$ is less than or equal to $4$ times the area of triangle $O_1O_2O_3.$
2015 NZMOC Camp Selection Problems, 7
Let $ABC$ be an acute-angled scalene triangle. Let $P$ be a point on the extension of $AB$ past $B$, and $Q$ a point on the extension of $AC$ past $C$ such that $BPQC$ is a cyclic quadrilateral. Let $N$ be the foot of the perpendicular from $A$ to $BC$. If $NP = NQ$ then prove that $N$ is also the centre of the circumcircle of $APQ$.
2005 Korea - Final Round, 4
In the following, the point of intersection of two lines $ g$ and $ h$ will be abbreviated as $ g\cap h$.
Suppose $ ABC$ is a triangle in which $ \angle A \equal{} 90^{\circ}$ and $ \angle B > \angle C$. Let $ O$ be the circumcircle of the triangle $ ABC$. Let $ l_{A}$ and $ l_{B}$ be the tangents to the circle $ O$ at $ A$ and $ B$, respectively.
Let $ BC \cap l_{A} \equal{} S$ and $ AC \cap l_{B} \equal{} D$. Furthermore, let $ AB \cap DS \equal{} E$, and let $ CE \cap l_{A} \equal{} T$. Denote by $ P$ the foot of the perpendicular from $ E$ on $ l_{A}$. Denote by $ Q$ the point of intersection of the line $ CP$ with the circle $ O$ (different from $ C$). Denote by $ R$ be the point of intersection of the line $ QT$ with the circle $ O$ (different from $ Q$). Finally, define $ U \equal{} BR \cap l_{A}$. Prove that
\[ \frac {SU \cdot SP}{TU \cdot TP} \equal{} \frac {SA^{2}}{TA^{2}}.
\]
1988 IMO Longlists, 70
$ABC$ is a triangle, with inradius $r$ and circumradius $R.$ Show that: \[ \sin \left( \frac{A}{2} \right) \cdot \sin \left( \frac{B}{2} \right) + \sin \left( \frac{B}{2} \right) \cdot \sin \left( \frac{C}{2} \right) + \sin \left( \frac{C}{2} \right) \cdot \sin \left( \frac{A}{2} \right) \leq \frac{5}{8} + \frac{r}{4 \cdot R}. \]
2016 Korea - Final Round, 1
In a acute triangle $\triangle ABC$, denote $D, E$ as the foot of the perpendicular from $B$ to $AC$ and $C$ to $AB$.
Denote the reflection of $E$ with respect to $AC, BC$ as $S, T$.
The circumcircle of $\triangle CST$ hits $AC$ at point $X (\not= C)$.
Denote the circumcenter of $\triangle CST$ as $O$. Prove that $XO \perp DE$.
2010 Postal Coaching, 2
Suppose $\triangle ABC$ has circumcircle $\Gamma$, circumcentre $O$ and orthocentre $H$. Parallel lines $\alpha, \beta, \gamma$ are drawn through the vertices $A, B, C$, respectively. Let $\alpha ', \beta ', \gamma '$ be the reflections of $\alpha, \beta, \gamma$ in the sides $BC, CA, AB$, respectively.
$(a)$ Show that $\alpha ', \beta ', \gamma '$ are concurrent if and only if $\alpha, \beta, \gamma$ are parallel to the Euler line $OH$.
$(b)$ Suppose that $\alpha ', \beta ' , \gamma '$ are concurrent at the point $P$ . Show that $\Gamma$ bisects $OP$ .
2012 Greece Junior Math Olympiad, 1
Let $ABC$ be an acute angled triangle (with $AB<AC<BC$) inscribed in circle $c(O,R)$ (with center $O$ and radius $R$). Circle $c_1(A,AB)$ (with center $A$ and radius $AB$) intersects side $BC$ at point $D$ and the circumcircle $c(O,R)$ at point $E$. Prove that side $AC$ bisects angle $\angle DAE$.