Found problems: 3882
2017 Bulgaria EGMO TST, 3
Let $ ABC$ be a fixed triangle, and let $ A_1$, $ B_1$, $ C_1$ be the midpoints of sides $ BC$, $ CA$, $ AB$, respectively. Let $ P$ be a variable point on the circumcircle. Let lines $ PA_1$, $ PB_1$, $ PC_1$ meet the circumcircle again at $ A'$, $ B'$, $ C'$, respectively. Assume that the points $ A$, $ B$, $ C$, $ A'$, $ B'$, $ C'$ are distinct, and lines $ AA'$, $ BB'$, $ CC'$ form a triangle. Prove that the area of this triangle does not depend on $ P$.
[i]Author: Christopher Bradley, United Kingdom [/i]
2012 Sharygin Geometry Olympiad, 11
Given triangle $ABC$ and point $P$. Points $A', B', C'$ are the projections of $P$ to $BC, CA, AB$. A line passing through $P$ and parallel to $AB$ meets the circumcircle of triangle $PA'B'$ for the second time in point $C_{1}$. Points $A_{1}, B_{1}$ are defined similarly. Prove that
a) lines $AA_{1}, BB_{1}, CC_{1}$ concur;
b) triangles $ABC$ and $A_{1}B_{1}C_{1}$ are similar.
2008 South africa National Olympiad, 5
Triangle $ABC$ has orthocentre $H$. The feet of the perpendiculars from $H$ to the internal and external bisectors of $\hat{A}$ are $P$ and $Q$ respectively. Prove that $P$ is on the line that passes through $Q$ and the midpoint of $BC$. (Note: The ortohcentre of a triangle is the point where the three altitudes intersect.)
2002 India IMO Training Camp, 13
Let $ABC$ and $PQR$ be two triangles such that
[list]
[b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$.
[b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$
[/list]
Prove that $AB+AC=PQ+PR$.
2015 Balkan MO Shortlist, G6
Let $AB$ be a diameter of a circle $(\omega)$ with centre $O$. From an arbitrary point $M$ on $AB$ such that $MA < MB$ we draw the circles $(\omega_1)$ and $(\omega_2)$ with diameters $AM$ and $BM$ respectively. Let $CD$ be an exterior common tangent of $(\omega_1), (\omega_2)$ such that $C$ belongs to $(\omega_1)$ and $D$ belongs to $(\omega_2)$. The point $E$ is diametrically opposite to $C$ with respect to $(\omega_1)$ and the tangent to $(\omega_1)$ at the point $E$ intersects $(\omega_2)$ at the points $F, G$. If the line of the common chord of the circumcircles of the triangles $CED$ and $CFG$ intersects the circle $(\omega)$ at the points $K, L$ and the circle $(\omega_2)$ at the point $N$ (with $N$ closer to $L$), then prove that $KC = NL$.
2013 ELMO Shortlist, 5
Let $\omega_1$ and $\omega_2$ be two orthogonal circles, and let the center of $\omega_1$ be $O$. Diameter $AB$ of $\omega_1$ is selected so that $B$ lies strictly inside $\omega_2$. The two circles tangent to $\omega_2$, passing through $O$ and $A$, touch $\omega_2$ at $F$ and $G$. Prove that $FGOB$ is cyclic.
[i]Proposed by Eric Chen[/i]
2007 Rioplatense Mathematical Olympiad, Level 3, 2
Let $ABC$ be a triangle with incenter $I$ . The circle of center $I$ which passes through $B$ intersects $AC$ at points $E$ and $F$, with $E$ and $F$ between $A $ and $C$ and different from each other. The circle circumscribed to triangle $IEF$ intersects segments $EB$ and $FB$ at $Q$ and $R$, respectively. Line $QR$ intersects the sides $A B$ and $B C$ at $P$ and $S$, respectively.
If $a , b$ and $c$ are the measures of the sides $B C, CA$ and $A B$, respectively, calculate the measurements of $B P$ and $B S$.
2013 Dutch BxMO/EGMO TST, 5
Let $ABCD$ be a cyclic quadrilateral for which $|AD| =|BD|$. Let $M$ be the intersection of $AC$ and $BD$. Let $I$ be the incentre of $\triangle BCM$. Let $N$ be the second intersection pointof $AC$ and the circumscribed circle of $\triangle BMI$. Prove that $|AN| \cdot |NC| = |CD | \cdot |BN|$.
1988 China Team Selection Test, 3
In triangle $ABC$, $\angle C = 30^{\circ}$, $O$ and $I$ are the circumcenter and incenter respectively, Points $D \in AC$ and $E \in BC$, such that $AD = BE = AB$. Prove that $OI = DE$ and $OI \bot DE$.
2004 Nicolae Coculescu, 4
Let $ H $ denote the orthocenter of an acute triangle $ ABC, $ and $ A_1,A_2,A_3 $ denote the intersections of the altitudes of this triangle with its circumcircle, and $ A',B',C' $ denote the projections of the vertices of this triangle on their opposite sides.
[b]a)[/b] Prove that the sides of the triangle $ A'B'C' $ are parallel to the sides of $ A_1B_1C_1. $
[b]b)[/b] Show that $ B_1C_1\cdot\overrightarrow{HA_1} +C_1A_1\cdot\overrightarrow{HB_1} +A_1B_1\cdot\overrightarrow{HC_1} =0. $
[i]Geoghe Duță[/i]
Oliforum Contest I 2008, 2
Let $ ABCD$ be a cyclic quadrilateral with $ AB>CD$ and $ BC>AD$. Take points $ X$ and $ Y$ on the sides $ AB$ and $ BC$, respectively, so that $ AX\equal{}CD$ and $ AD\equal{}CY$. Let $ M$ be the midpoint of $ XY$. Prove that $ AMC$ is a right angle.
2015 Oral Moscow Geometry Olympiad, 4
In triangle $ABC$, point $M$ is the midpoint of $BC, P$ is the intersection point of the tangents at points $B$ and $C$ of the circumscribed circle, $N$ is the midpoint of the segment $MP$. The segment $AN$ intersects the circumscribed circle at point $Q$. Prove that $\angle PMQ = \angle MAQ$.
2012 Nordic, 2
Given a triangle $ABC$, let $P$ lie on the circumcircle of the triangle and be the midpoint of the arc $BC$ which does not contain $A$. Draw a straight line $l$ through $P$ so that $l$ is parallel to $AB$. Denote by $k$ the circle which passes through $B$, and is tangent to $l$ at the point $P$. Let $Q$ be the second point of intersection of $k$ and the line $AB$ (if there is no second point of intersection, choose $Q = B$). Prove that $AQ = AC$.
2009 Korea National Olympiad, 1
Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.
2014 Moldova Team Selection Test, 3
Let $\triangle ABC$ be a triangle with $\angle A$-acute. Let $P$ be a point inside $\triangle ABC$ such that $\angle BAP = \angle ACP$ and $\angle CAP =\angle ABP$. Let $M, N$ be the centers of the incircle of $\triangle ABP$ and $\triangle ACP$, and $R$ the radius of the circumscribed circle of $\triangle AMN$. Prove that $\displaystyle \frac{1}{R}=\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AP}. $
2014 Kazakhstan National Olympiad, 1
Given a scalene triangle $ABC$. Incircle of $\triangle{ABC{}}$ touches the sides $AB$ and $BC$ at points $C_1$ and $A_1$ respectively, and excircle of $\triangle{ABC}$ (on side $AC$) touches $AB$ and $BC$ at points $ C_2$ and $A_2$ respectively. $BN$ is bisector of $\angle{ABC}$ ($N$ lies on $BC$). Lines $A_1C_1$ and $A_2C_2$ intersects the line $AC$ at points $K_1$ and $K_2$ respectively. Let circumcircles of $\triangle{BK_1N}$ and $\triangle{BK_2N}$ intersect circumcircle of a $\triangle{ABC}$ at points $P_1$ and $P_2$ respectively. Prove that $AP_1$=$CP_2$
1989 USAMO, 4
Let $ABC$ be an acute-angled triangle whose side lengths satisfy the inequalities $AB < AC < BC$. If point $I$ is the center of the inscribed circle of triangle $ABC$ and point $O$ is the center of the circumscribed circle, prove that line $IO$ intersects segments $AB$ and $BC$.
2023 Francophone Mathematical Olympiad, 3
Let $\Gamma$ and $\Gamma'$ be two circles with centres $O$ and $O'$, such that $O$ belongs to $\Gamma'$. Let $M$ be a point on $\Gamma'$, outside of $\Gamma$. The tangents to $\Gamma$ that go through $M$ touch $\Gamma$ in two points $A$ and $B$, and cross $\Gamma'$ again in two points $C$ and $D$. Finally, let $E$ be the crossing point of the lines $AB$ and $CD$. Prove that the circumcircles of the triangles $CEO'$ and $DEO'$ are tangent to $\Gamma'$.
2005 China Team Selection Test, 2
Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$.
(1) Prove that $F,B,C,E$ are concyclic.
(2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.
Durer Math Competition CD Finals - geometry, 2018.C+2
Given an $ABC$ triangle. Let $D$ be an extension of section $AB$ beyond $A$ such that that $AD = BC$ and $E$ is the extension of the section $BC$ beyond $B$ such that $BE = AC$. Prove that the circumcircle of triangle $DEB$ passes through the center of the inscribed circle of triangle $ABC$.
2013 Saudi Arabia IMO TST, 3
Let $ABC$ be an acute triangle, $M$ be the midpoint of $BC$ and $P$ be a point on line segment $AM$. Lines $BP$ and $CP$ meet the circumcircle of $ABC$ again at $X$ and $Y$ , respectively, and sides $AC$ at $D$ and $AB$ at $E$, respectively. Prove that the circumcircles of $AXD$ and $AYE$ have a common point $T \ne A$ on line $AM$.
2010 USA Team Selection Test, 3
Let $h_a, h_b, h_c$ be the lengths of the altitudes of a triangle $ABC$ from $A, B, C$ respectively. Let $P$ be any point inside the triangle. Show that
\[\frac{PA}{h_b+h_c} + \frac{PB}{h_a+h_c} + \frac{PC}{h_a+h_b} \ge 1.\]
2008 Hong Kong TST, 3
Let $ ABCDE$ be an arbitrary convex pentagon. Suppose that $ BD\cap CE \equal{} A'$, $ CE \cap DA \equal{} B'$, $ DA\cap EB \equal{} C'$, $ EB\cap AC \equal{} D'$ and $ AC \cap BD \equal{} E'$. Suppose also that $ (ABD')\cap (AC'E) \equal{} A''$, $ (BCE')\cap (BD'A) \equal{} B''$, $ (CDA')\cap (CE'B) \equal{} C''$, $ (DEB')\cap DA'C \equal{} D''$ and $ (EAC')\cap (EB'D) \equal{} E''$. Prove that $ AA''$, $ BB''$, $ CC''$, $ DD''$ and $ EE''$ are concurrent.
1908 Eotvos Mathematical Competition, 3
A regular polygon of 10 sides (a regular decagon) may be inscribed in a circle in the following two distinct ways: Divide the circumference into $10$ equal arcs and
(1) join each division point to the next by straight line segments,
(2) join each division point to the next but two by straight line segments. (See figures).
Prove that the difference in the side lengths of these two decagons is equal to the radius of their circumscribed circle.
[img]https://cdn.artofproblemsolving.com/attachments/7/9/41c38d08f4f89e07852942a493df17eaaf7498.png[/img]
2013 Greece National Olympiad, 4
Let a triangle $ABC$ inscribed in circle $c(O,R)$ and $D$ an arbitrary point on $BC$(different from the midpoint).The circumscribed circle of $BOD$,which is $(c_1)$, meets $c(O,R)$ at $K$ and $AB$ at $Z$.The circumscribed circle of $COD$ $(c_2)$,meets $c(O,R)$ at $M$ and $AC$ at $E$.Finally, the circumscribed circle of $AEZ$ $(c_3)$,meets $c(O,R)$ at $N$.Prove that $\triangle{ABC}=\triangle{KMN}.$