Found problems: 3882
2009 IMO, 2
Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP \equal{} OQ.$
[i]Proposed by Sergei Berlov, Russia [/i]
2005 Greece Team Selection Test, 2
Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$.
Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.
2010 Kyiv Mathematical Festival, 3
Let $O$ be the circumcenter and $I$ be the incenter of triangle $ABC.$ Prove that if $AI\perp OB$ and $BI\perp OC$ then $CI\parallel OA$.
2004 Croatia Team Selection Test, 3
A line intersects a semicircle with diameter $AB$ and center $O$ at $C$ and $D$, and the line $AB$ at $M$, where $MB < MA$ and $MD < MC.$ If the circumcircles of the triangles $AOC$ and $DOB$ meet again at $K,$ prove that $\angle MKO$ is right.
2002 Kazakhstan National Olympiad, 5
On the plane is given the acute triangle $ ABC $. Let $ A_1 $ and $ B_1 $ be the feet of the altitudes of $ A $ and $ B $ drawn from those vertices, respectively. Tangents at points $ A_1 $ and $ B_1 $ drawn to the circumscribed circle of the triangle $ CA_1B_1 $ intersect at $ M $. Prove that the circles circumscribed around the triangles $ AMB_1 $, $ BMA_1 $ and $ CA_1B_1 $ have a common point.
2020 Iran Team Selection Test, 4
Let $ABC$ be an isosceles triangle ($AB=AC$) with incenter $I$. Circle $\omega$ passes through $C$ and $I$ and is tangent to $AI$. $\omega$ intersects $AC$ and circumcircle of $ABC$ at $Q$ and $D$, respectively. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $CQ$. Prove that $AD$, $MN$ and $BC$ are concurrent.
[i]Proposed by Alireza Dadgarnia[/i]
2011 Saudi Arabia IMO TST, 2
Let $ABC$ be a triangle with $AB\ne AC$. Its incircle has center $I$ and touches the side $BC$ at point $D$. Line $AI$ intersects the circumcircle $\omega$ of triangle $ABC$ at $M$ and $DM$ intersects again $\omega$ at $P$. Prove that $\angle API= 90^o$.
1990 IMO Longlists, 82
In a triangle, a symmedian is a line through a vertex that is symmetric to the median with the respect to the internal bisector (all relative to the same vertex). In the triangle $ABC$, the median $m_a$ meets $BC$ at $A'$ and the circumcircle again at $A_1$. The symmedian $s_a$ meets $BC$ at $M$ and the circumcircle again at $A_2$. Given that the line $A_1A_2$ contains the circumcenter $O$ of the triangle, prove that:
[i](a) [/i]$\frac{AA'}{AM} = \frac{b^2+c^2}{2bc} ;$
[i](b) [/i]$1+4b^2c^2 = a^2(b^2+c^2)$
2010 Greece Team Selection Test, 3
Let $ABC$ be a triangle,$O$ its circumcenter and $R$ the radius of its circumcircle.Denote by $O_{1}$ the symmetric of $O$ with respect to $BC$,$O_{2}$ the symmetric of $O$ with respect to $AC$ and by $O_{3}$ the symmetric of $O$ with respect to $AB$.
(a)Prove that the circles $C_{1}(O_{1},R)$, $C_{2}(O_{2},R)$, $C_{3}(O_{3},R)$ have a common point.
(b)Denote by $T$ this point.Let $l$ be an arbitary line passing through $T$ which intersects $C_{1}$ at $L$, $C_{2}$ at $M$ and $C_{3}$ at $K$.From $K,L,M$ drop perpendiculars to $AB,BC,AC$ respectively.Prove that these perpendiculars pass through a point.
1999 Brazil National Olympiad, 6
Given any triangle $ABC$, show how to construct $A'$ on the side $AB$, $B'$ on the side $BC$ and $C'$ on the side $CA$, such that $ABC$ and $A'B'C'$ are similar (with $\angle A = \angle A', \angle B = \angle B', \angle C = \angle C'$) and $A'B'C'$ has the least possible area.
2015 Sharygin Geometry Olympiad, P20
Given are a circle and an ellipse lying inside it with focus $C$. Find the locus of the circumcenters of triangles $ABC$, where $AB$ is a chord of the circle touching the ellipse.
2013 IMO Shortlist, G4
Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.
2007 Tournament Of Towns, 3
$D$ is the midpoint of the side $BC$ of triangle $ABC$. $E$ and $F$ are points on $CA$ and $AB$ respectively, such that $BE$ is perpendicular to $CA$ and $CF$ is perpendicular to $AB$. If $DEF$ is an equilateral triangle, does it follow that $ABC$ is also equilateral?
2015 Azerbaijan JBMO TST, 3
There is a triangle $ABC$ that $AB$ is not equal to $AC$.$BD$ is interior bisector of $\angle{ABC}$($D\in AC$) $M$ is midpoint of $CBA$ arc.Circumcircle of $\triangle{BDM}$ cuts $AB$ at $K$ and $J,$ is symmetry of $A$ according $K$.If $DJ\cap AM=(O)$, Prove that $J,B,M,O$ are cyclic.
Kyiv City MO Seniors 2003+ geometry, 2016.11.4.1
In the triangle $ABC$ the angle bisector $AD$ is drawn, $E$ is the point of tangency of the inscribed circle to the side $BC$, $I$ is the center of the inscribed circle $\Delta ABC$. The point ${{A} _ {1}}$ on the circumscribed circle $\Delta ABC$ is such that $A {{A} _ {1}} || BC$. Denote by $T$ - the second point of intersection of the line $E {{A} _ {1}}$ and the circumscribed circle $\Delta AED$. Prove that $IT = IA$.
2019 Iran MO (3rd Round), 2
Consider an acute-angled triangle $ABC$ with $AB=AC$ and $\angle A>60^\circ$. Let $O$ be the circumcenter of $ABC$. Point $P$ lies on circumcircle of $BOC$ such that $BP\parallel AC$ and point $K$ lies on segment $AP$ such that $BK=BC$. Prove that $CK$ bisects the arc $BC$ of circumcircle of $BOC$.
1994 IMO Shortlist, 4
Let $ ABC$ be an isosceles triangle with $ AB \equal{} AC$. $ M$ is the midpoint of $ BC$ and $ O$ is the point on the line $ AM$ such that $ OB$ is perpendicular to $ AB$. $ Q$ is an arbitrary point on $ BC$ different from $ B$ and $ C$. $ E$ lies on the line $ AB$ and $ F$ lies on the line $ AC$ such that $ E, Q, F$ are distinct and collinear. Prove that $ OQ$ is perpendicular to $ EF$ if and only if $ QE \equal{} QF$.
2018 Moldova EGMO TST, 8
Let $ABC$ be a triangle with $AB=c$ , $BC=a$ and $AC=b$. If $ x,y\in\mathbb{R}$ satisfy $ \frac{1}{x} +\frac{1}{y+z} = \frac{1}{a} $ , $ \frac{1}{y} +\frac{1}{x+z} = \frac{1}{b} $ , $ \frac{1}{z} +\frac{1}{y+x} = \frac{1}{c} $ . Prove that the following equality holds $ x(p-a) + y(p-b) + z(p-c) = 3r^2 + 12R*r , $ Where $p$ is semi-perimeter, $R$ is the circumradius and $r$ is the inradius.
2012 Middle European Mathematical Olympiad, 3
In a given trapezium $ ABCD $ with $ AB$ parallel to $ CD $ and $ AB > CD $, the line $ BD $ bisects the angle $ \angle ADC $. The line through $ C $ parallel to $ AD $ meets the segments $ BD $ and $ AB $ in $ E $ and $ F $, respectively. Let $ O $ be the circumcenter of the triangle $ BEF $. Suppose that $ \angle ACO = 60^{\circ} $. Prove the equality
\[ CF = AF + FO .\]
Cono Sur Shortlist - geometry, 2018.G6
Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_A$ passes through the points $A$ and $H$ and is tangent to the circumcircle of the triangle $ABC$. Similarly, define the points $X_B$ and $X_C$. Let $O_A$, $O_B$ and $O_C$ be the reflections of $O$ with respect to sides $BC$, $CA$ and $AB$, respectively. Prove that the lines $O_AX_A$, $O_BX_B$ and $O_CX_C$ are concurrent.
1997 Putnam, 1
A rectangle, $HOMF$, has sides $HO=11$ and $OM=5$. A triangle $\Delta ABC$ has $H$ as orthocentre, $O$ as circumcentre, $M$ be the midpoint of $BC$, $F$ is the feet of altitude from $A$. What is the length of $BC$ ?
[asy]
unitsize(0.3 cm);
pair F, H, M, O;
F = (0,0);
H = (0,5);
O = (11,5);
M = (11,0);
draw(H--O--M--F--cycle);
label("$F$", F, SW);
label("$H$", H, NW);
label("$M$", M, SE);
label("$O$", O, NE);
[/asy]
1986 IMO Longlists, 44
The circle inscribed in a triangle $ABC$ touches the sides $BC,CA,AB$ in $D,E, F$, respectively, and $X, Y,Z$ are the midpoints of $EF, FD,DE$, respectively. Prove that the centers of the inscribed circle and of the circles around $XYZ$ and $ABC$ are collinear.
2008 China Team Selection Test, 1
Let $ ABC$ be a triangle, let $ AB > AC$. Its incircle touches side $ BC$ at point $ E$. Point $ D$ is the second intersection of the incircle with segment $ AE$ (different from $ E$). Point $ F$ (different from $ E$) is taken on segment $ AE$ such that $ CE \equal{} CF$. The ray $ CF$ meets $ BD$ at point $ G$. Show that $ CF \equal{} FG$.
2014 Contests, 3
Let $B$ and $C$ be two fixed points on a circle centered at $O$ that are not diametrically opposed. Let $A$ be a variable point on the circle distinct from $B$ and $C$ and not belonging to the perpendicular bisector of $BC$. Let $H$ be the orthocenter of $\triangle ABC$, and $M$ and $N$ be the midpoints of the segments $BC$ and $AH$, respectively. The line $AM$ intersects the circle again at $D$, and finally, $NM$ and $OD$ intersect at $P$. Determine the locus of points $P$ as $A$ moves around the circle.
2004 Bulgaria Team Selection Test, 2
Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.