This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2013 Sharygin Geometry Olympiad, 1

A circle $k$ passes through the vertices $B, C$ of a scalene triangle $ABC$. $k$ meets the extensions of $AB, AC$ beyond $B, C$ at $P, Q$ respectively. Let $A_1$ is the foot the altitude drop from $A$ to $BC$. Suppose $A_1P=A_1Q$. Prove that $\widehat{PA_1Q}=2\widehat{BAC}$.

2005 India IMO Training Camp, 1

Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point. [i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$. [i]Floor van Lamoen[/i]

2012 China Team Selection Test, 1

In an acute-angled $ABC$, $\angle A>60^{\circ}$, $H$ is its orthocenter. $M,N$ are two points on $AB,AC$ respectively, such that $\angle HMB=\angle HNC=60^{\circ}$. Let $O$ be the circumcenter of triangle $HMN$. $D$ is a point on the same side with $A$ of $BC$ such that $\triangle DBC$ is an equilateral triangle. Prove that $H,O,D$ are collinear.

2002 China Team Selection Test, 2

Circles $ \omega_{1}$ and $ \omega_{2}$ intersect at points $ A$ and $ B.$ Points $ C$ and $ D$ are on circles $ \omega_{1}$ and $ \omega_{2},$ respectively, such that lines $ AC$ and $ AD$ are tangent to circles $ \omega_{2}$ and $ \omega_{1},$ respectively. Let $ I_{1}$ and $ I_{2}$ be the incenters of triangles $ ABC$ and $ ABD,$ respectively. Segments $ I_{1}I_{2}$ and $ AB$ intersect at $ E$. Prove that: $ \frac {1}{AE} \equal{} \frac {1}{AC} \plus{} \frac {1}{AD}$

2011 Korea Junior Math Olympiad, 5

In triangle $ABC$, ($AB \ne AC$), let the orthocenter be $H$, circumcenter be $O$, and the midpoint of $BC$ be $M$. Let $HM \cap AO = D$. Let $P,Q,R,S$ be the midpoints of $AB,CD,AC,BD$. Let $X = PQ\cap RS$. Find $AH/OX$.

2008 South East Mathematical Olympiad, 3

In $\triangle ABC$, side $BC>AB$. Point $D$ lies on side $AC$ such that $\angle ABD=\angle CBD$. Points $Q,P$ lie on line $BD$ such that $AQ\bot BD$ and $CP\bot BD$. $M,E$ are the midpoints of side $AC$ and $BC$ respectively. Circle $O$ is the circumcircle of $\triangle PQM$ intersecting side $AC$ at $H$. Prove that $O,H,E,M$ lie on a circle.

2010 Princeton University Math Competition, 6

All the diagonals of a regular decagon are drawn. A regular decagon satisfies the property that if three diagonals concur, then one of the three diagonals is a diameter of the circumcircle of the decagon. How many distinct intersection points of diagonals are in the interior of the decagon?

2009 Italy TST, 2

Two circles $O_1$ and $O_2$ intersect at $M,N$. The common tangent line nearer to $M$ of the two circles touches $O_1,O_2$ at $A,B$ respectively. Let $C,D$ be the symmetric points of $A,B$ with respect to $M$ respectively. The circumcircle of triangle $DCM$ intersects circles $O_1$ and $O_2$ at points $E,F$ respectively which are distinct from $M$. Prove that the circumradii of the triangles $MEF$ and $NEF$ are equal.

2017 Macedonia JBMO TST, 4

In triangle $ABC$, the points $X$ and $Y$ are chosen on the arc $BC$ of the circumscribed circle of $ABC$ that doesn't contain $A$ so that $\measuredangle BAX = \measuredangle CAY$. Let $M$ be the midpoint of the segment $AX$. Show that $$BM + CM > AY.$$

2010 Sharygin Geometry Olympiad, 20

The incircle of an acute-angled triangle $ABC$ touches $AB, BC, CA$ at points $C_1, A_1, B_1$ respectively. Points $A_2, B_2$ are the midpoints of the segments $B_1C_1, A_1C_1$ respectively. Let $P$ be a common point of the incircle and the line $CO$, where $O$ is the circumcenter of triangle $ABC.$ Let also $A'$ and $B'$ be the second common points of $PA_2$ and $PB_2$ with the incircle. Prove that a common point of $AA'$ and $BB'$ lies on the altitude of the triangle dropped from the vertex $C.$

2005 All-Russian Olympiad, 3

Let $A',\,B',\,C'$ be points, in which excircles touch corresponding sides of triangle $ABC$. Circumcircles of triangles $A'B'C,\,AB'C',\,A'BC'$ intersect a circumcircle of $ABC$ in points $C_1\ne C,\,A_1\ne A,\,B_1\ne B$ respectively. Prove that a triangle $A_1B_1C_1$ is similar to a triangle, formed by points, in which incircle of $ABC$ touches its sides.

2004 Kurschak Competition, 1

Given is a triangle $ABC$, its circumcircle $\omega$, and a circle $k$ that touches $\omega$ from the outside, and also touches rays $AB$ and $AC$ in $P$ and $Q$, respectively. Prove that the $A$-excenter of $\triangle ABC$ is the midpoint of $\overline{PQ}$.

2000 Iran MO (3rd Round), 1

Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.

2011 Stars Of Mathematics, 1

Let $ABC$ be an acute-angled triangle with $AB \neq BC$, $M$ the midpoint of $AC$, $N$ the point where the median $BM$ meets again the circumcircle of $\triangle ABC$, $H$ the orthocentre of $\triangle ABC$, $D$ the point on the circumcircle for which $\angle BDH = 90^{\circ}$, and $K$ the point that makes $ANCK$ a parallelogram. Prove the lines $AC$, $KH$, $BD$ are concurrent. (I. Nagel)

2005 Taiwan TST Round 3, 1

Let $P$ be a point in the interior of $\triangle ABC$. The lengths of the sides of $\triangle ABC$ is $a,b,c$, and the distance from $P$ to the sides of $\triangle ABC$ is $p,q,r$. Show that the circumradius $R$ of $\triangle ABC$ satisfies \[\displaystyle R\le \frac{a^2+b^2+c^2}{18\sqrt[3]{pqr}}.\] When does equality hold?

2006 Germany Team Selection Test, 3

The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ meet at a point $X$. The circumcircles of triangles $ABX$ and $CDX$ meet at a point $Y$ (apart from $X$). Let $O$ be the center of the circumcircle of the quadrilateral $ABCD$. Assume that the points $O$, $X$, $Y$ are all distinct. Show that $OY$ is perpendicular to $XY$.

2005 All-Russian Olympiad, 3

We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.

2005 JBMO Shortlist, 3

Let $ABCDEF$ be a regular hexagon and $M\in (DE)$, $N\in(CD)$ such that $m (\widehat {AMN}) = 90^\circ$ and $AN = CM \sqrt {2}$. Find the value of $\frac{DM}{ME}$.

2014 PUMaC Geometry A, 6

$\triangle ABC$ has side lengths $AB=15$, $BC=34$, and $CA=35$. Let the circumcenter of $ABC$ be $O$. Let $D$ be the foot of the perpendicular from $C$ to $AB$. Let $R$ be the foot of the perpendicular from $D$ to $AC$, and let $W$ be the perpendicular foot from $D$ to $BC$. Find the area of quadrilateral $CROW$.

2018 Junior Balkan Team Selection Tests - Romania, 4

Let $ABC$ be a triangle, and let $E$ and $F$ be two arbitrary points on the sides $AB$ and $AC$, respectively. The circumcircle of triangle $AEF$ meets the circumcircle of triangle $ABC$ again at point $M$. Let $D$ be the reflection of point $M$ across the line $EF$ and let $O$ be the circumcenter of triangle $ABC$. Prove that $D$ is on $BC$ if and only if $O$ belongs to the circumcircle of triangle $AEF$.

1997 Hungary-Israel Binational, 3

Let $ ABC$ be an acute angled triangle whose circumcenter is $ O$. The three diameters of the circumcircle that pass through $ A$, $ B$, and $ C$, meet the opposite sides $ BC$, $ CA$, and $ AB$ at the points $ A_1$, $ B_1$ and $ C_1$, respectively. The circumradius of $ ABC$ is of length $ 2P$, where $ P$ is a prime number. The lengths of $ OA_1$, $ OB_1$, $ OC_1$ are integers. What are the lengths of the sides of the triangle?

2012 Oral Moscow Geometry Olympiad, 4

In triangle $ABC$, point $I$ is the center of the inscribed circle points, points $I_A$ and $I_C$ are the centers of the excircles, tangent to sides $BC$ and $AB$, respectively. Point $O$ is the center of the circumscribed circle of triangle $II_AI_C$. Prove that $OI \perp AC$

Croatia MO (HMO) - geometry, 2010.7

Given a non- isosceles triangle $ABC$. Let the points $B'$ and $C'$ be symmetric to the points $B$ and $C$ wrt $AC$ and $AB$ respectively. If the circles circumscribed around triangles $ABB'$ and $ACC'$ intersect at point $P$, prove that the line $AP$ passes through the center of the circumcircle of the triangle $ABC$.

2006 Iran MO (2nd round), 2

Let $ABCD$ be a convex cyclic quadrilateral. Prove that: $a)$ the number of points on the circumcircle of $ABCD$, like $M$, such that $\frac{MA}{MB}=\frac{MD}{MC}$ is $4$. $b)$ The diagonals of the quadrilateral which is made with these points are perpendicular to each other.

1959 IMO, 5

An arbitrary point $M$ is selected in the interior of the segment $AB$. The square $AMCD$ and $MBEF$ are constructed on the same side of $AB$, with segments $AM$ and $MB$ as their respective bases. The circles circumscribed about these squares, with centers $P$ and $Q$, intersect at $M$ and also at another point $N$. Let $N'$ denote the point of intersection of the straight lines $AF$ and $BC$. a) Prove that $N$ and $N'$ coincide; b) Prove that the straight lines $MN$ pass through a fixed point $S$ independent of the choice of $M$; c) Find the locus of the midpoints of the segments $PQ$ as $M$ varies between $A$ and $B$.