Found problems: 3882
2002 All-Russian Olympiad, 2
The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ meet at $O$. The circumcircles of triangles $AOB$ and $COD$ intersect again at $K$. Point $L$ is such that the triangles $BLC$ and $AKD$ are similar and equally oriented. Prove that if the quadrilateral $BLCK$ is convex, then it is tangent [has an incircle].
1962 IMO, 5
On the circle $K$ there are given three distinct points $A,B,C$. Construct (using only a straightedge and a compass) a fourth point $D$ on $K$ such that a circle can be inscribed in the quadrilateral thus obtained.
2005 Iran MO (3rd Round), 3
Prove that in acute-angled traingle ABC if $r$ is inradius and $R$ is radius of circumcircle then: \[a^2+b^2+c^2\geq 4(R+r)^2\]
2020 Dutch IMO TST, 2
Given is a triangle $ABC$ with its circumscribed circle and $| AC | <| AB |$. On the short arc $AC$, there is a variable point $D\ne A$. Let $E$ be the reflection of $A$ wrt the inner bisector of $\angle BDC$. Prove that the line $DE$ passes through a fixed point, regardless of point $D$.
2011 IMO Shortlist, 3
Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$.
[i]Proposed by Carlos Yuzo Shine, Brazil[/i]
2019 Centers of Excellency of Suceava, 3
The circumcenter, circumradius and orthocenter of a triangle $ ABC $ satisfying $ AB<AC $ are notated with $ O,R,H, $ respectively. Prove that the middle of the segment $ OH $ belongs to the line $ BC $ if
$$ AC^2-AB^2=2R\cdot BC. $$
[i]Marius Marchitan[/i]
1987 IMO Longlists, 40
The perpendicular line issued from the center of the circumcircle to the bisector of angle $C$ in a triangle $ABC$ divides the segment of the bisector inside $ABC$ into two segments with ratio of lengths $\lambda$. Given $b = AC$ and $a = BC$, find the length of side $c.$
2007 Greece JBMO TST, 1
Let $ABC$ be a triangle with $\angle A=105^o$ and $\angle C=\frac{1}{4} \angle B$.
a) Find the angles $\angle B$ and $\angle C$
b) Let $O$ be the center of the circumscribed circle of the triangle $ABC$ and let $BD$ be a diameter of that circle. Prove that the distance of point $C$ from the line $BD$ is equal to $\frac{BD}{4}$.
Kyiv City MO Seniors 2003+ geometry, 2011.11.4
On the diagonals $AC$ and $BD$ of the inscribed quadrilateral A$BCD$, the points $X$ and $Y$ are marked, respectively, so that the quadrilateral $ABXY$ is a parallelogram. Prove that the circumscribed circles of triangles $BXD$ and $CYA$ have equal radii.
(Vyacheslav Yasinsky)
1964 AMC 12/AHSME, 35
The sides of a triangle are of lengths $13$, $14$, and $15$. The altitudes of the triangle meet at point $H$. If $AD$ is the altitude to the side length $14$, what is the ratio $HD:HA$?
$\textbf{(A) } 3 : 11\qquad
\textbf{(B) } 5 : 11\qquad
\textbf{(C) } 1 : 2\qquad
\textbf{(D) }2 : 3\qquad
\textbf{(E) }25 : 33$
2012 Mexico National Olympiad, 6
Consider an acute triangle $ABC$ with circumcircle $\mathcal{C}$. Let $H$ be the orthocenter of $ABC$ and $M$ the midpoint of $BC$. Lines $AH$, $BH$ and $CH$ cut $\mathcal{C}$ again at points $D$, $E$, and $F$ respectively; line $MH$ cuts $\mathcal{C}$ at $J$ such that $H$ lies between $J$ and $M$. Let $K$ and $L$ be the incenters of triangles $DEJ$ and $DFJ$ respectively. Prove $KL$ is parallel to $BC$.
2020 Olympic Revenge, 3
Let $ABC$ be a triangle and $\omega$ its circumcircle. Let $D$ and $E$ be the feet of the angle bisectors relative to $B$ and $C$, respectively. The line $DE$ meets $\omega$ at $F$ and $G$. Prove that the tangents to $\omega$ through $F$ and $G$ are tangents to the excircle of $\triangle ABC$ opposite to $A$.
2008 Germany Team Selection Test, 3
Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$.
Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$.
[i]Author: Farzan Barekat, Canada[/i]
2016 Sharygin Geometry Olympiad, P15
Let $O, M, N$ be the circumcenter, the centroid and the Nagel point of a triangle. Prove that angle $MON$ is right if and only if one of the triangle’s angles is equal to $60^o$.
2008 May Olympiad, 4
Let $ABF$ be a right-angled triangle with $\angle AFB = 90$, a square $ABCD$ is externally to the triangle. If $FA = 6$, $FB = 8$ and $E$ is the circumcenter of the square $ABCD$, determine the value of $EF$
2007 IMO Shortlist, 5
Let $ ABC$ be a fixed triangle, and let $ A_1$, $ B_1$, $ C_1$ be the midpoints of sides $ BC$, $ CA$, $ AB$, respectively. Let $ P$ be a variable point on the circumcircle. Let lines $ PA_1$, $ PB_1$, $ PC_1$ meet the circumcircle again at $ A'$, $ B'$, $ C'$, respectively. Assume that the points $ A$, $ B$, $ C$, $ A'$, $ B'$, $ C'$ are distinct, and lines $ AA'$, $ BB'$, $ CC'$ form a triangle. Prove that the area of this triangle does not depend on $ P$.
[i]Author: Christopher Bradley, United Kingdom [/i]
2024 China National Olympiad, 5
In acute $\triangle {ABC}$, ${K}$ is on the extention of segment $BC$. $P, Q$ are two points such that $KP \parallel AB, BK=BP$ and $KQ\parallel AC, CK=CQ$. The circumcircle of $\triangle KPQ$ intersects $AK$ again at ${T}$. Prove that:
(1) $\angle BTC+\angle APB=\angle CQA$.
(2) $AP \cdot BT \cdot CQ=AQ \cdot CT \cdot BP$.
Proposed by [i]Yijie He[/i] and [i]Yijuan Yao[/i]
2005 Germany Team Selection Test, 3
Let $ABC$ be a triangle with orthocenter $H$, incenter $I$ and centroid $S$, and let $d$ be the diameter of the circumcircle of triangle $ABC$. Prove the inequality
\[9\cdot HS^2+4\left(AH\cdot AI+BH\cdot BI+CH\cdot CI\right)\geq 3d^2,\]
and determine when equality holds.
2022 Kyiv City MO Round 1, Problem 3
Let $H$ and $O$ be the orthocenter and the circumcenter of the triangle $ABC$. Line $OH$ intersects the sides $AB, AC$ at points $X, Y$ correspondingly, so that $H$ belongs to the segment $OX$. It turned out that $XH = HO = OY$. Find $\angle BAC$.
[i](Proposed by Oleksii Masalitin)[/i]
2013 India Regional Mathematical Olympiad, 1
Let $ABC$ be an isosceles triangle with $AB=AC$ and let $\Gamma$ denote its circumcircle. A point $D$ is on arc $AB$ of $\Gamma$ not containing $C$. A point $E$ is on arc $AC$ of $\Gamma$ not containing $B$. If $AD=CE$ prove that $BE$ is parallel to $AD$.
2020 Iran Team Selection Test, 3
Given a triangle $ABC$ with circumcircle $\Gamma$. Points $E$ and $F$ are the foot of angle bisectors of $B$ and $C$, $I$ is incenter and $K$ is the intersection of $AI$ and $EF$. Suppose that $T$ be the midpoint of arc $BAC$. Circle $\Gamma$ intersects the $A$-median and circumcircle of $AEF$ for the second time at $X$ and $S$. Let $S'$ be the reflection of $S$ across $AI$ and $J$ be the second intersection of circumcircle of $AS'K$ and $AX$. Prove that quadrilateral $TJIX$ is cyclic.
[i]Proposed by Alireza Dadgarnia and Amir Parsa Hosseini[/i]
2011 Peru IMO TST, 2
Let $A_1A_2 \ldots A_n$ be a convex polygon. Point $P$ inside this polygon is chosen so that its projections $P_1, \ldots , P_n$ onto lines $A_1A_2, \ldots , A_nA_1$ respectively lie on the sides of the polygon. Prove that for arbitrary points $X_1, \ldots , X_n$ on sides $A_1A_2, \ldots , A_nA_1$ respectively,
\[\max \left\{ \frac{X_1X_2}{P_1P_2}, \ldots, \frac{X_nX_1}{P_nP_1} \right\} \geq 1.\]
[i]Proposed by Nairi Sedrakyan, Armenia[/i]
2019 Caucasus Mathematical Olympiad, 2
In a triangle $ABC$ let $I$ be the incenter. Prove that the circle passing through $A$ and touching $BI$ at $I$, and the circle passing through $B$ and touching $AI$ at $I$, intersect at a point on the circumcircle of $ABC$.
2010 Mexico National Olympiad, 2
Let $ABC$ be an acute triangle with $AB\neq AC$, $M$ be the median of $BC$, and $H$ be the orthocenter of $\triangle ABC$. The circumcircle of $B$, $H$, and $C$ intersects the median $AM$ at $N$. Show that $\angle ANH=90^\circ$.
2003 Junior Tuymaada Olympiad, 3
In the acute triangle $ ABC $, the point $ I $ is the center of the inscribed the circle, the point $ O $ is the center of the circumscribed circle and the point $ I_a $ is the center the excircle tangent to the side $ BC $ and the extensions of the sides $ AB $ and $ AC $. Point $ A'$ is symmetric to vertex $ A $ with respect to the line $ BC $. Prove that $ \angle IOI_a = \angle IA'I_a $.