This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1991 Vietnam National Olympiad, 2

Let $G$ be centroid and $R$ the circunradius of a triangle $ABC$. The extensions of $GA,GB,GC$ meet the circuncircle again at $D,E,F$. Prove that: $\frac{3}{R} \leq \frac{1}{GD} + \frac{1}{GE} + \frac{1}{GF} \leq \sqrt{3} \leq \frac{1}{AB} + \frac{1}{BC} + \frac{1}{CA}$

2021 Polish MO Finals, 3

Let $\omega$ be the circumcircle of a triangle $ABC$. Let $P$ be any point on $\omega$ different than the verticies of the triangle. Line $AP$ intersects $BC$ at $D$, $BP$ intersects $AC$ at $E$ and $CP$ intersects $AB$ at $F$. Let $X$ be the projection of $D$ onto line passing through midpoints of $AP$ and $BC$, $Y$ be the projection of $E$ onto line passing through $BP$ and $AC$ and let $Z$ be the projection of $F$ onto line passing through midpoints of $CP$ and $AB$. Let $Q$ be the circumcenter of triangle $XYZ$. Prove that all possible points $Q$, corresponding to different positions of $P$ lie on one circle.

2008 Harvard-MIT Mathematics Tournament, 4

In a triangle $ ABC$, take point $ D$ on $ BC$ such that $ DB \equal{} 14, DA \equal{} 13, DC \equal{} 4$, and the circumcircle of $ ADB$ is congruent to the circumcircle of $ ADC$. What is the area of triangle $ ABC$?

1992 IberoAmerican, 3

Let $ABC$ be an equilateral triangle of sidelength 2 and let $\omega$ be its incircle. a) Show that for every point $P$ on $\omega$ the sum of the squares of its distances to $A$, $B$, $C$ is 5. b) Show that for every point $P$ on $\omega$ it is possible to construct a triangle of sidelengths $AP$, $BP$, $CP$. Also, the area of such triangle is $\frac{\sqrt{3}}{4}$.

2020 Dutch IMO TST, 2

Given is a triangle $ABC$ with its circumscribed circle and $| AC | <| AB |$. On the short arc $AC$, there is a variable point $D\ne A$. Let $E$ be the reflection of $A$ wrt the inner bisector of $\angle BDC$. Prove that the line $DE$ passes through a fixed point, regardless of point $D$.

1989 Turkey Team Selection Test, 6

The circle, which is tangent to the circumcircle of isosceles triangle $ABC$ ($AB=AC$), is tangent $AB$ and $AC$ at $P$ and $Q$, respectively. Prove that the midpoint $I$ of the segment $PQ$ is the center of the excircle (which is tangent to $BC$) of the triangle .

1991 ITAMO, 1

For every triangle $ABC$ inscribed in a circle $\Gamma$ , let $A',B',C'$ be the intersections of the bisectors of the angles at $A,B,C$ with $\Gamma$ . Consider the triangle $A'B'C'$ . (a) Do triangles $A'B'C'$ go over all possible triangles inscribed in $\Gamma$ as $\vartriangle ABC$ varies? If not, what are the constraints? (b) Prove that the angle bisectors of $\vartriangle ABC$ are the altitudes of $\vartriangle A',B',C'$ .

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle with $AB>AC$, let $I$ be the center of the incircle. Let $M,N$ be the midpoint of $AC$ and $AB$ respectively. $D,E$ are on $AC$ and $AB$ respectively such that $BD\parallel IM$ and $CE\parallel IN$. A line through $I$ parallel to $DE$ intersects $BC$ in $P$. Let $Q$ be the projection of $P$ on line $AI$. Prove that $Q$ is on the circumcircle of $\triangle ABC$.

1999 Korea Junior Math Olympiad, 5

$O$ is a circumcircle of $ABC$ and $CO$ meets $AB$ at $P$, and $BO$ meets $AC$ at $Q$. Show that $BP=PQ=QC$ if and only if $\angle A=60^{\circ}$.

2007 All-Russian Olympiad Regional Round, 8.7

Given an isosceles triangle $ ABC$ with $ AB \equal{} BC$. A point $ M$ is chosen inside $ ABC$ such that $ \angle AMC \equal{} 2\angle ABC$ . A point $ K$ lies on segment $ AM$ such that $ \angle BKM \equal{}\angle ABC$. Prove that $ BK \equal{} KM\plus{}MC$.

2019 Pan-African, 3

Let $ABC$ be a triangle, and $D$, $E$, $F$ points on the segments $BC$, $CA$, and $AB$ respectively such that $$ \frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB}. $$ Show that if the centres of the circumscribed circles of the triangles $DEF$ and $ABC$ coincide, then $ABC$ is an equilateral triangle.

2010 China Team Selection Test, 1

Let $\omega$ be a semicircle and $AB$ its diameter. $\omega_1$ and $\omega_2$ are two different circles, both tangent to $\omega$ and to $AB$, and $\omega_1$ is also tangent to $\omega_2$. Let $P,Q$ be the tangent points of $\omega_1$ and $\omega_2$ to $AB$ respectively, and $P$ is between $A$ and $Q$. Let $C$ be the tangent point of $\omega_1$ and $\omega$. Find $\tan\angle ACQ$.

2019 Sharygin Geometry Olympiad, 1

A trapezoid with bases $AB$ and $CD$ is inscribed into a circle centered at $O$. Let $AP$ and $AQ$ be the tangents from $A$ to the circumcircle of triangle $CDO$. Prove that the circumcircle of triangle $APQ$ passes through the midpoint of $AB$.

2006 Italy TST, 2

Let $ABC$ be a triangle, let $H$ be the orthocentre and $L,M,N$ the midpoints of the sides $AB, BC, CA$ respectively. Prove that \[HL^{2} + HM^{2} + HN^{2} < AL^{2} + BM^{2} + CN^{2}\] if and only if $ABC$ is acute-angled.

2017 Philippine MO, 4

Circles \(\mathcal{C}_1\) and \(\mathcal{C}_2\) with centers at \(C_1\) and \(C_2\) respectively, intersect at two points \(A\) and \(B\). Points \(P\) and \(Q\) are varying points on \(\mathcal{C}_1\) and \(\mathcal{C}_2\), respectively, such that \(P\), \(Q\) and \(B\) are collinear and \(B\) is always between \(P\) and \(Q\). Let lines \(PC_1\) and \(QC_2\) intersect at \(R\), let \(I\) be the incenter of \(\Delta PQR\), and let \(S\) be the circumcenter of \(\Delta PIQ\). Show that as \(P\) and \(Q\) vary, \(S\) traces the arc of a circle whose center is concyclic with \(A\), \(C_1\) and \(C_2\).

2006 Turkey MO (2nd round), 3

Find all the triangles such that its side lenghts, area and its angles' measures (in degrees) are rational.

2013 Turkey MO (2nd round), 1

The circle $\omega_1$ with diameter $[AB]$ and the circle $\omega_2$ with center $A$ intersects at points $C$ and $D$. Let $E$ be a point on the circle $\omega_2$, which is outside $\omega_1$ and at the same side as $C$ with respect to the line $AB$. Let the second point of intersection of the line $BE$ with $\omega_2$ be $F$. For a point $K$ on the circle $\omega_1$ which is on the same side as $A$ with respect to the diameter of $\omega_1$ passing through $C$ we have $2\cdot CK \cdot AC = CE \cdot AB$. Let the second point of intersection of the line $KF$ with $\omega_1$ be $L$. Show that the symmetric of the point $D$ with respect to the line $BE$ is on the circumcircle of the triangle $LFC$.

1985 IMO Shortlist, 22

A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB=90^{\circ}$.

2013 Bosnia And Herzegovina - Regional Olympiad, 2

In triangle $ABC$, $\angle ACB=50^{\circ}$ and $\angle CBA=70^{\circ}$. Let $D$ be a foot of perpendicular from point $A$ to side $BC$, $O$ circumcenter of $ABC$ and $E$ antipode of $A$ in circumcircle $ABC$. Find $\angle DAE$

2017 Ukrainian Geometry Olympiad, 4

In the right triangle $ABC$ with hypotenuse $AB$, the incircle touches $BC$ and $AC$ at points ${{A}_{1}}$ and ${{B}_{1}}$ respectively. The straight line containing the midline of $\Delta ABC$ , parallel to $AB$, intersects its circumcircle at points $P$ and $T$. Prove that points $P,T,{{A}_{1}}$ and ${{B}_{1}}$ lie on one circle.

2005 France Team Selection Test, 2

Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle). Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.

Champions Tournament Seniors - geometry, 2005.2

Given a triangle $ABC$, the line passing through the vertex $A$ symmetric to the median $AM$ wrt the line containing the bisector of the angle $\angle BAC$ intersects the circle circumscribed around the triangle $ABC$ at points $A$ and $K$. Let $L$ be the midpoint of the segment $AK$. Prove that $\angle BLC=2\angle BAC$.

2022 Korea Junior Math Olympiad, 6

Let $ABC$ be a isosceles triangle with $\overline{AB}=\overline{AC}$. Let $D(\neq A, C)$ be a point on the side $AC$, and circle $\Omega$ is tangent to $BD$ at point $E$, and $AC$ at point $C$. Denote by $F(\neq E)$ the intersection of the line $AE$ and the circle $\Omega$, and $G(\neq a)$ the intersection of the line $AC$ and the circumcircle of the triangle $ABF$. Prove that points $D, E, F,$ and $G$ are concyclic.

2006 India National Olympiad, 5

In a cyclic quadrilateral $ABCD$, $AB=a$, $BC=b$, $CD=c$, $\angle ABC = 120^\circ$ and $\angle ABD = 30^\circ$. Prove that (1) $c \ge a + b$; (2) $|\sqrt{c + a} - \sqrt{c + b} | = \sqrt{c - a - b}$.