This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1985 Balkan MO, 1

In a given triangle $ABC$, $O$ is its circumcenter, $D$ is the midpoint of $AB$ and $E$ is the centroid of the triangle $ACD$. Show that the lines $CD$ and $OE$ are perpendicular if and only if $AB=AC$.

2024 pOMA, 3

Let $ABC$ be a triangle with circumcircle $\Omega$, and let $P$ be a point on the arc $BC$ of $\Omega$ not containing $A$. Let $\omega_B$ and $\omega_C$ be circles respectively passing through $B$ and $C$ and such that both of them are tangent to line $AP$ at point $P$. Let $R$, $R_B$, $R_C$ be the radii of $\Omega$, $\omega_B$, and $\omega_C$, respectively. Prove that if $h$ is the distance from $A$ to line $BC$, then \[ \frac{R_B+R_C}{R} \le \frac{BC}{h}. \]

1989 IMO, 2

$ ABC$ is a triangle, the bisector of angle $ A$ meets the circumcircle of triangle $ ABC$ in $ A_1$, points $ B_1$ and $ C_1$ are defined similarly. Let $ AA_1$ meet the lines that bisect the two external angles at $ B$ and $ C$ in $ A_0$. Define $ B_0$ and $ C_0$ similarly. Prove that the area of triangle $ A_0B_0C_0 \equal{} 2 \cdot$ area of hexagon $ AC_1BA_1CB_1 \geq 4 \cdot$ area of triangle $ ABC$.

2016 China Team Selection Test, 1

$P$ is a point in the interior of acute triangle $ABC$. $D,E,F$ are the reflections of $P$ across $BC,CA,AB$ respectively. Rays $AP,BP,CP$ meet the circumcircle of $\triangle ABC$ at $L,M,N$ respectively. Prove that the circumcircles of $\triangle PDL,\triangle PEM,\triangle PFN$ meet at a point $T$ different from $P$.

2017 Korea National Olympiad, problem 6

In a quadrilateral $ABCD$, we have $\angle ACB = \angle ADB = 90$ and $CD < BC$. Denote $E$ as the intersection of $AC$ and $BD$, and let the perpendicular bisector of $BD$ hit $BC$ at $F$. The circle with center $F$ which passes through $B$ hits $AB$ at $P (\neq B)$ and $AC$ at $Q$. Let $M$ be the midpoint of $EP$. Prove that the circumcircle of $EPQ$ is tangent to $AB$ if and only if $B, M, Q$ are colinear.

1999 Turkey Team Selection Test, 1

Let the area and the perimeter of a cyclic quadrilateral $C$ be $A_C$ and $P_C$, respectively. If the area and the perimeter of the quadrilateral which is tangent to the circumcircle of $C$ at the vertices of $C$ are $A_T$ and $P_T$ , respectively, prove that $\frac{A_C}{A_T} \geq \left (\frac{P_C}{P_T}\right )^2$.

2014 ELMO Shortlist, 2

$ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent. [i]Proposed by Yang Liu[/i]

1997 Baltic Way, 15

In the acute triangle $ABC$, the bisectors of $A,B$ and $C$ intersect the circumcircle again at $A_1,B_1$ and $C_1$, respectively. Let $M$ be the point of intersection of $AB$ and $B_1C_1$, and let $N$ be the point of intersection of $BC$ and $A_1B_1$. Prove that $MN$ passes through the incentre of $\triangle ABC$.

2007 Purple Comet Problems, 13

Find the circumradius of the triangle with side lengths $104$, $112$, and $120$.

2010 ELMO Shortlist, 3

A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$. [i]Evan O' Dorney.[/i]

2012 ELMO Shortlist, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

2010 Stanford Mathematics Tournament, 9

For an acute triangle $ABC$ and a point $X$ satisfying $\angle{ABX}+\angle{ACX}=\angle{CBX}+\angle{BCX}$. Fi nd the minimum length of $AX$ if $AB=13$, $BC=14$, and $CA=15$.

2023 Olimphíada, 1

Let $ABC$ be a triangle and $H$ and $D$ be the feet of the height and bisector relative to $A$ in $BC$, respectively. Let $E$ be the intersection of the tangent to the circumcircle of $ABC$ by $A$ with $BC$ and $M$ be the midpoint of $AD$. Finally, let $r$ be the line perpendicular to $BC$ that passes through $M$. Show that $r$ is tangent to the circumcircle of $AHE$.

2014 Cono Sur Olympiad, 5

Let $ABCD$ be an inscribed quadrilateral in a circumference with center $O$ such that it lies inside $ABCD$ and $\angle{BAC} = \angle{ODA}$. Let $E$ be the intersection of $AC$ with $BD$. Lines $r$ and $s$ are drawn through $E$ such that $r$ is perpendicular to $BC$, and $s$ is perpendicular to $AD$. Let $P$ be the intersection of $r$ with $AD$, and $M$ the intersection of $s$ with $BC$. Let $N$ be the midpoint of $EO$. Prove that $M$, $N$, and $P$ lie on a line.

2010 Postal Coaching, 4

Five distinct points $A, B, C, D$ and $E$ lie in this order on a circle of radius $r$ and satisfy $AC = BD = CE = r$. Prove that the orthocentres of the triangles $ACD, BCD$ and $BCE$ are the vertices of a right-angled triangle.

2014 China Team Selection Test, 1

Let the circumcenter of triangle $ABC$ be $O$. $H_A$ is the projection of $A$ onto $BC$. The extension of $AO$ intersects the circumcircle of $BOC$ at $A'$. The projections of $A'$ onto $AB, AC$ are $D,E$, and $O_A$ is the circumcentre of triangle $DH_AE$. Define $H_B, O_B, H_C, O_C$ similarly. Prove: $H_AO_A, H_BO_B, H_CO_C$ are concurrent

2007 Bulgaria Team Selection Test, 1

Let $ABC$ is a triangle with $\angle BAC=\frac{\pi}{6}$ and the circumradius equal to 1. If $X$ is a point inside or in its boundary let $m(X)=\min(AX,BX,CX).$ Find all the angles of this triangle if $\max(m(X))=\frac{\sqrt{3}}{3}.$

2001 All-Russian Olympiad, 4

A sphere with center on the plane of the face $ABC$ of a tetrahedron $SABC$ passes through $A$, $B$ and $C$, and meets the edges $SA$, $SB$, $SC$ again at $A_1$, $B_1$, $C_1$, respectively. The planes through $A_1$, $B_1$, $C_1$ tangent to the sphere meet at $O$. Prove that $O$ is the circumcenter of the tetrahedron $SA_1B_1C_1$.

2013 Online Math Open Problems, 38

Triangle $ABC$ has sides $AB = 25$, $BC = 30$, and $CA=20$. Let $P,Q$ be the points on segments $AB,AC$, respectively, such that $AP=5$ and $AQ=4$. Suppose lines $BQ$ and $CP$ intersect at $R$ and the circumcircles of $\triangle{BPR}$ and $\triangle{CQR}$ intersect at a second point $S\ne R$. If the length of segment $SA$ can be expressed in the form $\frac{m}{\sqrt{n}}$ for positive integers $m,n$, where $n$ is not divisible by the square of any prime, find $m+n$. [i]Victor Wang[/i]

2015 China Second Round Olympiad, 3

$P$ is a point on arc $\overarc{BC}$ of the circumcircle of $\triangle ABC$ not containing $A$, $K$ lies on segment $AP$ such that $BK$ bisects $\angle ABC$. The circumcircle of $\triangle KPC$ meets $AC,BD$ at $D,E$ respectively. $PE$ meets $AB$ at $F$. Prove that $\angle ABC=2\angle FCB$.

2002 Czech-Polish-Slovak Match, 5

In an acute-angled triangle $ABC$ with circumcenter $O$, points $P$ and $Q$ are taken on sides $AC$ and $BC$ respectively such that $\frac{AP}{PQ} = \frac{BC}{AB}$ and $\frac{BQ}{PQ} =\frac{AC}{AB}$ . Prove that the points $O, P,Q,C$ lie on a circle.

2013 Kazakhstan National Olympiad, 3

Let $ABCD$ be cyclic quadrilateral. Let $AC$ and $BD$ intersect at $R$, and let $AB$ and $CD$ intersect at $K$. Let $M$ and $N$ are points on $AB$ and $CD$ such that $\frac{AM}{MB}=\frac{CN}{ND}$. Let $P$ and $Q$ be the intersections of $MN$ with the diagonals of $ABCD$. Prove that circumcircles of triangles $KMN$ and $PQR$ are tangent at a fixed point.

2002 Turkey MO (2nd round), 2

Two circles are externally tangent to each other at a point $A$ and internally tangent to a third circle $\Gamma$ at points $B$ and $C.$ Let $D$ be the midpoint of the secant of $\Gamma$ which is tangent to the smaller circles at $A.$ Show that $A$ is the incenter of the triangle $BCD$ if the centers of the circles are not collinear.

2014 Tajikistan Team Selection Test, 4

In a convex hexagon $ABCDEF$ the diagonals $AD,BE,CF$ intersect at a point $M$. It is known that the triangles $ABM,BCM,CDM,DEM,EFM,FAM$ are acute. It is also known that the quadrilaterals $ABDE,BCEF,CDFA$ have the same area. Prove that the circumcenters of triangles $ABM,BCM,CDM,DEM,EFM,FAM$ are concyclic. [i]Proposed by Nairy Sedrakyan[/i]

2015 Indonesia MO, 6

Let $ABC$ be an acute angled triangle with circumcircle $O$. Line $AO$ intersects the circumcircle of triangle $ABC$ again at point $D$. Let $P$ be a point on the side $BC$. Line passing through $P$ perpendicular to $AP$ intersects lines $DB$ and $DC$ at $E$ and $F$ respectively . Line passing through $D$ perpendicular to $BC$ intersects $EF$ at point $Q$. Prove that $EQ = FQ$ if and only if $BP = CP$.