Found problems: 478
2015 IFYM, Sozopol, 6
In $\Delta ABC$ points $A_1$, $B_1$, and $C_1$ are the tangential points of the excircles of $ABC$ with its sides.
a) Prove that $AA_1$, $BB_1$, and $CC_1$ intersect in one point $N$.
b) If $AC+BC=3AB$, prove that the center of the inscribed circle of $ABC$, its tangential point with $AB$, and the point $N$ are collinear.
2019 Belarus Team Selection Test, 3.2
A point $T$ is chosen inside a triangle $ABC$. Let $A_1$, $B_1$, and $C_1$ be the reflections of $T$ in $BC$, $CA$, and $AB$, respectively. Let $\Omega$ be the circumcircle of the triangle $A_1B_1C_1$. The lines $A_1T$, $B_1T$, and $C_1T$ meet $\Omega$ again at $A_2$, $B_2$, and $C_2$, respectively. Prove that the lines $AA_2$, $BB_2$, and $CC_2$ are concurrent on $\Omega$.
[i]Proposed by Mongolia[/i]
2023 JBMO TST - Turkey, 2
Let $ABC$ is acute angled triangle and $K,L$ is points on $AC,BC$ respectively such that $\angle{AKB}=\angle{ALB}$. $P$ is intersection of $AL$ and $BK$ and $Q$ is the midpoint of segment $KL$. Let $T,S$ are the intersection $AL,BK$ with $(ABC)$ respectively. Prove that $TK,SL,PQ$ are concurrent.
2007 Sharygin Geometry Olympiad, 8
Three circles pass through a point $P$, and the second points of their intersection $A, B, C$ lie on a straight line. Let $A_1 B_1, C_1$ be the second meets of lines $AP, BP, CP$ with the corresponding circles. Let $C_2$ be the intersections of lines $AB_1$ and $BA_1$. Let $A_2, B_2$ be defined similarly. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equal,
2014 Cuba MO, 9
The triangle $ABC$ is inscribed in circle $\Gamma$. The points X, Y, Z are the midpoints of the arcs $BC$, $CA$ and $AB$ respectively in $\Gamma$ (those that do not contain the third vertex, in each case). The intersection points of the sides of the triangles $\vartriangle ABC$ and $\vartriangle XY Z$ form the hexagon $DEFGHK$. Prove that the diagonals $DG$, $EH$ and $FK$ are concurrent
2023 Sharygin Geometry Olympiad, 17
A common external tangent to circles $\omega_1$ and $\omega_2$ touches them at points $T_1, T_2$ respectively. Let $A$ be an arbitrary point on the extension of $T_1T_2$ beyond $T_1$, and $B$ be a point on the extension of $T_1T_2$ beyond $T_2$ such that $AT_1 = BT_2$. The tangents from $A$ to $\omega_1$ and from $B$ to $\omega_2$ distinct from $T_1T_2$ meet at point $C$. Prove that all nagelians of triangles $ABC$ from $C$ have a common point.
2014 Contests, 3
Let $ABCDEF$ be a convex hexagon. In the hexagon there is a point $K$, such that $ABCK,DEFK$ are both parallelograms. Prove that the three lines connecting $A,B,C$ to the midpoints of segments $CE,DF,EA$ meet at one point.
2011 Oral Moscow Geometry Olympiad, 6
Let $AA_1 , BB_1$, and $CC_1$ be the altitudes of the non-isosceles acute-angled triangle $ABC$. The circles circumscibred around the triangles $ABC$ and $A_1 B_1 C$ intersect again at the point $P , Z$ is the intersection point of the tangents to the circumscribed circle of the triangle $ABC$ conducted at points $A$ and $B$ . Prove that lines $AP , BC$ and $ZC_1$ are concurrent.
1914 Eotvos Mathematical Competition, 3
The circle k intersects the sides $BC$, $CA$, $AB$ of triangle $ABC$ in points $A_1$, $A_2$, $B_1$, $B_2$, $C_1$, $C_2$. The perpendiculars to $BC$, $CA$, $AB$ through $A_1$, $B_1$, $C_1$, respectively, meet at a point $M$. Prove that the three perpendiculars to $BC$, $CA$, $AB$ through $A_2$, $B_2$, and $C_2$, respectively, also meet in one point.
2022 Brazil Team Selection Test, 2
Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.
2023 Sharygin Geometry Olympiad, 6
Let $A_1, B_1, C_1$ be the feet of altitudes of an acute-angled triangle $ABC$. The incircle of triangle $A_1B_1C_1$ touches $A_1B_1, A_1C_1, B_1C_1$ at points $C_2, B_2, A_2$ respectively. Prove that the lines $AA_2, BB_2, CC_2$ concur at a point lying on the Euler line of triangle $ABC$.
2002 Junior Balkan Team Selection Tests - Romania, 3
Let $C_1(O_1)$ and $ C_2(O_2)$ be two circles such that $C_1$ passes through $O_2$. Point $M$ lies on $C_1$ such that $M \notin O_1O_2$. The tangents from $M$ at $O_2$ meet again $C_1$ at $A$ and $B$. Prove that the tangents from $A$ and $B$ at $C_2$ - others than $MA$ and $MB$ - meet at a point located on $C_1$.
2020-IMOC, G2
Let $O$ be the circumcenter of triangle $ABC$. Define $O_{A0} = O_{B0} = O_{C0} = O$. Recursively, define $O_{An}$ to be the circumcenter of $\vartriangle BO_{A(n-1)}C$. Similarly define $O_{Bn}, O_{Cn}$. Find all $n \ge 1$ so that for any triangle $ABC$ such that $O_{An}, O_{Bn}, O_{Cn}$ all exist, it is true that $AO_{An}, BO_{Bn}, CO_{Cn}$ are concurrent.
(Li4)
Geometry Mathley 2011-12, 16.3
The incircle $(I)$ of a triangle $ABC$ touches $BC,CA,AB$ at $D,E, F$. Let $ID, IE, IF$ intersect $EF, FD,DE$ at $X,Y,Z$, respectively. The lines $\ell_a, \ell_b, \ell_c$ through $A,B,C$ respectively and are perpendicular to $YZ,ZX,XY$ .
Prove that $\ell_a, \ell_b, \ell_c$ are concurrent at a point that is on the line segment joining $I$ and the centroid of triangle $ABC$ .
Nguyễn Minh Hà
1998 Tournament Of Towns, 4
All the diagonals of a regular $25$-gon are drawn. Prove that no $9$ of the diagonals pass through one interior point of the $25$-gon.
(A Shapovalov)
2011 Sharygin Geometry Olympiad, 16
Given are triangle $ABC$ and line $\ell$. The reflections of $\ell$ in $AB$ and $AC$ meet at point $A_1$. Points $B_1, C_1$ are defined similarly. Prove that
a) lines $AA_1, BB_1, CC_1$ concur,
b) their common point lies on the circumcircle of $ABC$
c) two points constructed in this way for two perpendicular lines are opposite.
2009 Junior Balkan Team Selection Tests - Romania, 3
Consider a regular polygon $A_0A_1...A_{n-1}, n \ge 3$, and $m \in\{1, 2, ..., n - 1\}, m \ne n/2$. For any number $i \in \{0,1, ... , n - 1\}$, let $r(i)$ be the remainder of $i + m$ at the division by $n$. Prove that no three segments $A_iA_{r(i)}$ are concurrent.
2011 Sharygin Geometry Olympiad, 8
The incircle of right-angled triangle $ABC$ ($\angle B = 90^o$) touches $AB,BC,CA$ at points $C_1,A_1,B_1$ respectively. Points $A_2, C_2$ are the reflections of $B_1$ in lines $BC, AB$ respectively. Prove that lines $A_1A_2$ and $C_1C_2$ meet on the median of triangle $ABC$.
2000 Bosnia and Herzegovina Team Selection Test, 6
It is given triangle $ABC$ such that $\angle ABC = 3 \angle CAB$. On side $AC$ there are two points $M$ and $N$ in order $A - N - M - C$ and $\angle CBM = \angle MBN = \angle NBA$. Let $L$ be an arbitrary point on side $BN$ and $K$ point on $BM$ such that $LK \mid \mid AC$. Prove that lines $AL$, $NK$ and $BC$ are concurrent
2016 Regional Olympiad of Mexico Center Zone, 3
Let $ABC$ be a triangle with orthocenter $H$ and $\ell$ a line that passes through $H$, and is parallel to $BC$. Let $m$ and $n$ be the reflections of $\ell$ on the sides of $AB$ and $AC$, respectively, $m$ and $n$ are intersect at $P$. If $HP$ and $BC$ intersect at $Q$, prove that the parallel to $AH$ through $Q$ and $AP$ intersect at the circumcenter of the triangle $ABC$.
2020 Macedonia Additional BMO TST, 1
Let $P$ and $Q$ be interior points in $\Delta ABC$ such that $PQ$ doesn't contain any vertices of $\Delta ABC$.
Let $A_1$, $B_1$, and $C_1$ be the points of intersection of $BC$, $CA$, and $AB$ with $AQ$, $BQ$, and $CQ$, respectively.
Let $K$, $L$, and $M$ be the intersections of $AP$, $BP$, and $CP$ with $B_1C_1$, $C_1A_1$, and $A_1B_1$, respectively.
Prove that $A_1K$, $B_1L$, and $C_1M$ are concurrent.
2011 Sharygin Geometry Olympiad, 21
On a circle with diameter $AC$, let $B$ be an arbitrary point distinct from $A$ and $C$. Points $M, N$ are the midpoints of chords $AB, BC$, and points $P, Q$ are the midpoints of smaller arcs restricted by these chords. Lines $AQ$ and $BC$ meet at point $K$, and lines $CP$ and $AB$ meet at point $L$. Prove that lines $MQ, NP$ and $KL$ concur.
2019 Germany Team Selection Test, 3
A point $T$ is chosen inside a triangle $ABC$. Let $A_1$, $B_1$, and $C_1$ be the reflections of $T$ in $BC$, $CA$, and $AB$, respectively. Let $\Omega$ be the circumcircle of the triangle $A_1B_1C_1$. The lines $A_1T$, $B_1T$, and $C_1T$ meet $\Omega$ again at $A_2$, $B_2$, and $C_2$, respectively. Prove that the lines $AA_2$, $BB_2$, and $CC_2$ are concurrent on $\Omega$.
[i]Proposed by Mongolia[/i]
Kvant 2020, M2600
Let $ABCD$ be an inscribed quadrilateral. Let the circles with diameters $AB$ and $CD$ intersect at two points $X_1$ and $Y_1$, the circles with diameters $BC$ and $AD$ intersect at two points $X_2$ and $Y_2$, the circles with diameters $AC$ and $BD$ intersect at two points $X_3$ and $Y_3$. Prove that the lines $X_1Y_1, X_2Y_2$ and $X_3Y_3$ are concurrent.
Maxim Didin
2015 Korea - Final Round, 2
In a triangle $\triangle ABC$ with incenter $I$, the incircle meets lines $BC, CA, AB$ at $D, E, F$ respectively.
Define the circumcenter of $\triangle IAB$ and $\triangle IAC$ $O_1$ and $O_2$ respectively.
Let the two intersections of the circumcircle of $\triangle ABC$ and line $EF$ be $P, Q$.
Prove that the circumcenter of $\triangle DPQ$ lies on the line $O_1O_2$.