Found problems: 257
2022 Saudi Arabia IMO TST, 3
Let $A,B,C,D$ be points on the line $d$ in that order and $AB = CD$. Denote $(P)$ as some circle that passes through $A, B$ with its tangent lines at $A, B$ are $a,b$. Denote $(Q)$ as some circle that passes through $C, D$ with its tangent lines at $C, D$ are $c,d$. Suppose that $a$ cuts $c, d$ at $K, L$ respectively and $b$ cuts $c, d$ at $M, N$ respectively. Prove that four points $K, L, M,N$ belong to a same circle $(\omega)$ and the common external tangent lines of circles $(P)$, $(Q)$ meet on $(\omega)$.
2022 Bulgarian Autumn Math Competition, Problem 9.2
Given is the triangle $ABC$ such that $BC=13, CA=14, AB=15$ Prove that $B$, the incenter $J$ and the midpoints of $AB$ and $BC$ all lie on a circle
1989 ITAMO, 4
Points $A,M,B,C,D$ are given on a circle in this order such that $A$ and $B$ are equidistant from $M$. Lines $MD$ and $AC$ intersect at $E$ and lines $MC$ and $BD$ intersect at $F$. Prove that the quadrilateral $CDEF$ is inscridable in a circle.
2020 March Advanced Contest, 2
An acute triangle \(ABC\) has circumcircle \(\Gamma\) and circumcentre \(O\). The incentres of \(AOB\) and \(AOC\) are \(I_b\) and \(I_c\) respectively. Let \(M\) be the the point on \(\Gamma\) such that \(MB = MC\) and \(M\) lies on the same side of \(BC\) as \(A\). Prove that the points \(M\), \(A\), \(I_b\), and \(I_c\) are concyclic.
2019 Saudi Arabia JBMO TST, 1
Let $E$ be a point lies inside the parallelogram $ABCD$ such that $\angle BCE = \angle BAE$.
Prove that the circumcenters of triangles $ABE,BCE,CDE,DAE$ are concyclic.
Durer Math Competition CD 1st Round - geometry, 2016.C1
Let $P$ be an arbitrary point of the side line $AB$ of the triangle $ABC$. Mark the perpendicular projection of $P$ on the side lines $AC$ and $BC$ as $A_1$ and $B_1$ respectively. Denote $C_1$ he foot of the alttiude starting from $C$. Prove that the points $A_1$, $B_1$, $C_1$, $C$ and $P$ lie on a circle.
VI Soros Olympiad 1999 - 2000 (Russia), 9.5
A straight line is drawn through an arbitrary internal point $K$ of the trapezoid $ABCD$, intersecting the bases of $BC$ and $AD$ at points $P$ and $Q$, respectively. The circles circumscribed around the triangles $BPK$ and $DQK$ intersect, besides the point $K$, also at the point $L$. Prove that the point $L$ lies on the diagonal $BD$.
Kharkiv City MO Seniors - geometry, 2012.10.4
In the acute-angled triangle $ABC$ on the sides $AC$ and $BC$, points $D$ and $E$ are chosen such that points $A, B, E$, and $D$ lie on one circle. The circumcircle of triangle $DEC$ intersects side $AB$ at points $X$ and $Y$. Prove that the midpoint of segment $XY$ is the foot of the altitude of the triangle, drawn from point $C$.
1975 Chisinau City MO, 105
Let $M$ be the point of intersection of the diagonals, and $K$ be the point of intersection of the bisectors of the angles $B$ and $C$ of the convex quadrilateral $ABCD$. Prove that points $A, B, M, K$ lie on the same circle if the following relation holds: $|AB|=|BC|=|CD|$
Kyiv City MO Seniors Round2 2010+ geometry, 2017.11.2
The median $CM$ is drawn in the triangle $ABC$ intersecting bisector angle $BL$ at point $O$. Ray $AO$ intersects side $BC$ at point $K$, beyond point $K$ draw the segment $KT = KC$. On the ray $BC$ beyond point $C$ draw a segment $CN = BK$. Prove that is a quadrilateral $ABTN$ is cyclic if and only if $AB = AK$.
(Vladislav Yurashev)
Ukrainian TYM Qualifying - geometry, 2011.14
Given a quadrilateral $ABCD$, inscribed in a circle $\omega$ such that $AB=AD$ and $CB=CD$ . Take the point $P \in \omega$. Let the vertices of the quadrilateral $Q_1Q_2Q_3Q_4$ be symmetric to the point P wrt the lines $AB$, $BC$, $CD$, and $DA$, respectively.
a) Prove that the points symmetric to the point $P$ wrt lines $Q_1Q_22, Q_2Q_3, Q_3Q_4$ and $Q_4Q_1$, lie on one line.
b) Prove that when the point $P$ moves in a circle $\omega$, then all such lines pass through one common point.
2015 Belarus Team Selection Test, 3
Let the incircle of the triangle $ABC$ touch the side $AB$ at point $Q$. The incircles of the triangles $QAC$ and $QBC$ touch $AQ,AC$ and $BQ,BC$ at points $P,T$ and $D,F$ respectively. Prove that $PDFT$ is a cyclic quadrilateral.
I.Gorodnin
2022 Oral Moscow Geometry Olympiad, 1
Given an isosceles trapezoid $ABCD$. The bisector of angle $B$ intersects the base $AD$ at point $L$. Prove that the center of the circle circumscribed around triangle $BLD$ lies on the circle circumscribed around the trapezoid.
(Yu. Blinkov)
2013 Sharygin Geometry Olympiad, 4
A point $F$ inside a triangle $ABC$ is chosen so that $\angle AFB = \angle BFC = \angle CFA$. The line passing through $F$ and perpendicular to $BC$ meets the median from $A$ at point $A_1$. Points $B_1$ and $C_1$ are defined similarly. Prove that the points $A_1, B_1$, and $C_1$ are three vertices of some regular hexagon, and that the three remaining vertices of that hexagon lie on the sidelines of $ABC$.
Ukrainian TYM Qualifying - geometry, 2020.12
On the side $CD$ of the square $ABCD$, the point $F$ is chosen and the equal squares $DGFE$ and $AKEH$ are constructed ($E$ and $H$ lie inside the square). Let $M$ be the midpoint of $DF$, $J$ is the incenter of the triangle $CFH$. Prove that:
a) the points $D, K, H, J, F$ lie on the same circle;
b) the circles inscribed in triangles $CFH$ and $GMF$ have the same radii.
2023 China Western Mathematical Olympiad, 6
As shown in the figure, let point $E$ be the intersection of the diagonals $AC$ and $BD$ of the cyclic quadrilateral $ABCD$. The circumcenter of triangle $ABE$ is denoted as $K$. Point $X$ is the reflection of point $B$ with respect to the line $CD$, and point $Y$ is the point on the plane such that quadrilateral $DKEY$ is a parallelogram. Prove that the points $D,E,X,Y$ are concyclic.
[img]https://cdn.artofproblemsolving.com/attachments/3/4/df852f90028df6f09b4ec1342f5330fc531d12.jpg[/img]
Estonia Open Junior - geometry, 2014.2.5
In the plane there are six different points $A, B, C, D, E, F$ such that $ABCD$ and $CDEF$ are parallelograms. What is the maximum number of those points that can be located on one circle?
2000 Switzerland Team Selection Test, 13
The incircle of a triangle $ABC$ touches the sides $AB,BC,CA$ at points $D,E,F$ respectively. Let $P$ be an internal point of triangle $ABC$ such that the incircle of triangle $ABP$ touches $AB$ at $D$ and the sides $AP$ and $BP$ at $Q$ and $R$. Prove that the points $E,F,R,Q$ lie on a circle.
1975 Chisinau City MO, 111
Three squares are constructed on the sides of the triangle to the outside. What should be the angles of the triangle so that the six vertices of these squares, other than the vertices of the triangle, lie on the same circle?
2021 Sharygin Geometry Olympiad, 9.5
Let $O$ be the clrcumcenter of triangle $ABC$. Points $X$ and $Y$ on side $BC$ are such that $AX = BX$ and $AY = CY$. Prove that the circumcircle of triangle $AXY$ passes through the circumceuters of triangles $AOB$ and $AOC$.
2015 Costa Rica - Final Round, 1
Let $ABCD$ be a quadrilateral whose diagonals are perpendicular, and let $S$ be the intersection of those diagonals. Let $K, L, M$ and $N$ be the reflections of $S$ on the sides $AB$, $BC$, $CD$ and $DA$ respectively. $BN$ cuts the circumcircle of $\vartriangle SKN$ at $E$ and $BM$ cuts the circumcircle of $\vartriangle SLM$ at $F$. Prove that the quadrilateral $EFLK$ is cyclic.
2017-IMOC, G5
We have $\vartriangle ABC$ with $I$ as its incenter. Let $D$ be the intersection of $AI$ and $BC$ and define $E, F$ in a similar way. Furthermore, let $Y = CI \cap DE, Z = BI \cap DF$. Prove that if $\angle BAC = 120^o$, then $E, F, Y,Z$ are concyclic.
[img]https://1.bp.blogspot.com/-5IFojUbPE3o/XnSKTlTISqI/AAAAAAAALd0/0OwKMl02KJgqPs-SDOlujdcWXM0cWJiegCK4BGAYYCw/s1600/imoc2017%2Bg5.png[/img]
2021 239 Open Mathematical Olympiad, 2
A triangle $ABC$ with an obtuse angle at the vertex $C$ is inscribed in a circle with a center at point $O$. Circumcircle of triangle $AOB$ centered at point $P$ intersects line $AC$ at points $A$ and $A_1$, line $BC$ at points $B$ and $B_1$, and the perpendicular bisector of the segment $PC$ at points $D$ and $E$. Prove that points $D$ and $E$ together with the centers of the circumscribed circles of triangles $A_1OC$ and $B_1OC$ lie on one circle.
Ukrainian TYM Qualifying - geometry, 2020.10
In triangle $ABC$, point $I$ is the center, point $I_a$ is the center of the excircle tangent to the side $BC$. From the vertex $A$ inside the angle $BAC$ draw rays $AX$ and $AY$. The ray $AX$ intersects the lines $BI$, $CI$, $BI_a$, $CI_a$ at points $X_1$, $...$, $X_4$, respectively, and the ray $AY$ intersects the same lines at points $Y_1$, $...$, $Y_4$ respectively. It turned out that the points $X_1,X_2,Y_1,Y_2$ lie on the same circle. Prove the equality $$\frac{X_1X_2}{X_3X_4}= \frac{Y_1Y_2}{Y_3Y_4}.$$
2019 Swedish Mathematical Competition, 2
Segment $AB$ is the diameter of a circle. Points $C$ and $D$ lie on the circle. The rays $AC$ and $AD$ intersect the tangent to the circle at point $B$ at points $P$ and $Q$, respectively. Show that points $C, D, P$ and $Q$ lie on a circle.