This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 670

1992 Turkey Team Selection Test, 1

The feet of perpendiculars from the intersection point of the diagonals of cyclic quadrilateral $ABCD$ to the sides $AB,BC,CD,DA$ are $P,Q,R,S$, respectively. Prove $PQ+RS=QR+SP$.

2022 Irish Math Olympiad, 7

7. The four Vertices of a quadrilateral [i]ABCD[/i] lie on the circle with diameter [i]AB[/i]. The diagonals of [i]ABCD[/i] intersect at [i]E[/i], and the lines [i]AD[/i] and [i]BC[/i] intersect at [i]F[/i]. Line [i]FE[/i] meets [i]AB[/i] at [i]K[/i] and line [i]DK[/i] meets the circle again at [i]L[/i]. Prove that [i]CL[/i] is perpendicular to [i]AB[/i].

1990 APMO, 1

Given triangle $ABC$, let $D$, $E$, $F$ be the midpoints of $BC$, $AC$, $AB$ respectively and let $G$ be the centroid of the triangle. For each value of $\angle BAC$, how many non-similar triangles are there in which $AEGF$ is a cyclic quadrilateral?

1958 AMC 12/AHSME, 42

In a circle with center $ O$, chord $ \overline{AB}$ equals chord $ \overline{AC}$. Chord $ \overline{AD}$ cuts $ \overline{BC}$ in $ E$. If $ AC \equal{} 12$ and $ AE \equal{} 8$, then $ AD$ equals: $ \textbf{(A)}\ 27\qquad \textbf{(B)}\ 24\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 20\qquad \textbf{(E)}\ 18$

2015 USAJMO, 5

Let $ABCD$ be a cyclic quadrilateral. Prove that there exists a point $X$ on segment $\overline{BD}$ such that $\angle BAC=\angle XAD$ and $\angle BCA=\angle XCD$ if and only if there exists a point $Y$ on segment $\overline{AC}$ such that $\angle CBD=\angle YBA$ and $\angle CDB=\angle YDA$.

2017 Polish MO Finals, 1

Points $P$ and $Q$ lie respectively on sides $AB$ and $AC$ of a triangle $ABC$ and $BP=CQ$. Segments $BQ$ and $CP$ cross at $R$. Circumscribed circles of triangles $BPR$ and $CQR$ cross again at point $S$ different from $R$. Prove that point $S$ lies on the bisector of angle $BAC$.

2014 Contests, 1

$ABCD$ is a cyclic quadrilateral, with diagonals $AC,BD$ perpendicular to each other. Let point $F$ be on side $BC$, the parallel line $EF$ to $AC$ intersect $AB$ at point $E$, line $FG$ parallel to $BD$ intersect $CD$ at $G$. Let the projection of $E$ onto $CD$ be $P$, projection of $F$ onto $DA$ be $Q$, projection of $G$ onto $AB$ be $R$. Prove that $QF$ bisects $\angle PQR$.

2011 India National Olympiad, 5

Let $ABCD$ be a cyclic quadrilateral inscribed in a circle $\Gamma.$ Let $E,F,G,H$ be the midpoints of arcs $AB,BC,CD,AD$ of $\Gamma,$ respectively. Suppose that $AC\cdot BD=EG\cdot FH.$ Show that $AC,BD,EG,FH$ are all concurrent.

2004 Oral Moscow Geometry Olympiad, 5

The diagonals of the inscribed quadrilateral $ABCD$ meet at the point $M$, $\angle AMB = 60^o$. Equilateral triangles $ADK$ and $BCL$ are built outward on sides $AD$ and $BC$. Line $KL$ meets the circle circumscribed ariound $ABCD$ at points $P$ and $Q$. Prove that $PK = LQ$.

2010 Contests, 1

Let $ ABC$ be a triangle with circum-circle $ \Gamma$. Let $ M$ be a point in the interior of triangle $ ABC$ which is also on the bisector of $ \angle A$. Let $ AM, BM, CM$ meet $ \Gamma$ in $ A_{1}, B_{1}, C_{1}$ respectively. Suppose $ P$ is the point of intersection of $ A_{1}C_{1}$ with $ AB$; and $ Q$ is the point of intersection of $ A_{1}B_{1}$ with $ AC$. Prove that $ PQ$ is parallel to $ BC$.

Brazil L2 Finals (OBM) - geometry, 2010.5

The diagonals of an cyclic quadrilateral $ABCD$ intersect at $O$. The circumcircles of triangle $AOB$ and $COD$ intersect lines $BC$ and $AD$, for the second time, at points $M, N, P$and $Q$. Prove that the $MNPQ$ quadrilateral is inscribed in a circle of center $O$.

2020 South Africa National Olympiad, 5

Let $ABC$ be a triangle, and let $T$ be a point on the extension of $AB$ beyond $B$, and $U$ a point on the extension of $AC$ beyond $C$, such that $BT = CU$. Moreover, let $R$ and $S$ be points on the extensions of $AB$ and $AC$ beyond $A$ such that $AS = AT$ and $AR = AU$. Prove that $R$, $S$, $T$, $U$ lie on a circle whose centre lies on the circumcircle of $ABC$.

2023 Thailand TST, 1

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

OIFMAT I 2010, 2

In an acute angle $ \vartriangle ABC $, let $ AD, BE, CF $ be their altitudes (with $ D, E, F $ lying on $ BC, CA, AB $, respectively). Let's call $ O, H $ the circumcenter and orthocenter of $ \vartriangle ABC $, respectively. Let $ P = CF \cap AO $. Suppose the following two conditions are true: $\bullet$ $ FP = EH $ $\bullet$ There is a circle that passes through points $ A, O, H, C $ Prove that the $ \vartriangle ABC $ is equilateral.

2011 Balkan MO, 1

Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.

2016 Regional Olympiad of Mexico Southeast, 2

Let $ABCD$ a trapezium with $AB$ parallel to $CD, \Omega$ the circumcircle of $ABCD$ and $A_1,B_1$ points on segments $AC$ and $BC$ respectively, such that $DA_1B_1C$ is a cyclic cuadrilateral. Let $A_2$ and $B_2$ the symmetric points of $A_1$ and $B_1$ with respect of the midpoint of $AC$ and $BC$, respectively. Prove that points $A, B, A_2, B_2$ are concyclic.

2008 Germany Team Selection Test, 3

Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$. [i]Author: Farzan Barekat, Canada[/i]

2001 China National Olympiad, 1

Let $a$ be real number with $\sqrt{2}<a<2$, and let $ABCD$ be a convex cyclic quadrilateral whose circumcentre $O$ lies in its interior. The quadrilateral's circumcircle $\omega$ has radius $1$, and the longest and shortest sides of the quadrilateral have length $a$ and $\sqrt{4-a^2}$, respectively. Lines $L_A,L_B,L_C,L_D$ are tangent to $\omega$ at $A,B,C,D$, respectively. Let lines $L_A$ and $L_B$, $L_B$ and $L_C$,$L_C$ and $L_D$,$L_D$ and $L_A$ intersect at $A',B',C',D'$ respectively. Determine the minimum value of $\frac{S_{A'B'C'D'}}{S_{ABCD}}$.

1988 Austrian-Polish Competition, 3

In a ABCD cyclic quadrilateral 4 points K, L ,M, N are taken on AB , BC , CD and DA , respectively such that KLMN is a parallelogram. Lines AD, BC and KM have a common point. And also lines AB, DC and NL have a common point. Prove that KLMN is rhombus.

2018 Pan-African Shortlist, G3

Given a triangle $ABC$, let $D$ be the intersection of the line through $A$ perpendicular to $AB$, and the line through $B$ perpendicular to $BC$. Let $P$ be a point inside the triangle. Show that $DAPB$ is cyclic if and only if $\angle BAP = \angle CBP$.

2014 ELMO Shortlist, 6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$. [i]Proposed by Yang Liu[/i]

2023 Kyiv City MO Round 1, Problem 3

Consider all pairs of distinct points on the Cartesian plane $(A, B)$ with integer coordinates. Among these pairs of points, find all for which there exist two distinct points $(X, Y)$ with integer coordinates, such that the quadrilateral $AXBY$ is convex and inscribed. [i]Proposed by Anton Trygub[/i]

2017 Greece National Olympiad, 1

An acute triangle $ABC$ with $AB<AC<BC$ is inscribed in a circle $c(O,R)$. The circle $c_1(A,AC)$ intersects the circle $c$ at point $D$ and intersects $CB$ at $E$. If the line $AE$ intersects $c$ at $F$ and $G$ lies in $BC$ such that $EB=BG$, prove that $F,E,D,G$ are concyclic.

2009 International Zhautykov Olympiad, 2

Given a quadrilateral $ ABCD$ with $ \angle B\equal{}\angle D\equal{}90^{\circ}$. Point $ M$ is chosen on segment $ AB$ so taht $ AD\equal{}AM$. Rays $ DM$ and $ CB$ intersect at point $ N$. Points $ H$ and $ K$ are feet of perpendiculars from points $ D$ and $ C$ to lines $ AC$ and $ AN$, respectively. Prove that $ \angle MHN\equal{}\angle MCK$.

2006 Junior Balkan Team Selection Tests - Romania, 1

Let $ABCD$ be a cyclic quadrilateral of area 8. If there exists a point $O$ in the plane of the quadrilateral such that $OA+OB+OC+OD = 8$, prove that $ABCD$ is an isosceles trapezoid.