This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 670

I Soros Olympiad 1994-95 (Rus + Ukr), 10.9

Prove that for all natural $n\ge 6 000$ any convex $1994$-gon can be cut into $n$ such quadrilaterals thata circle can be circumscribed around each of them

1972 IMO Longlists, 27

Given $n>4$, prove that every cyclic quadrilateral can be dissected into $n$ cyclic quadrilaterals.

2009 China National Olympiad, 1

Given an acute triangle $ PBC$ with $ PB\neq PC.$ Points $ A,D$ lie on $ PB,PC,$ respectively. $ AC$ intersects $ BD$ at point $ O.$ Let $ E,F$ be the feet of perpendiculars from $ O$ to $ AB,CD,$ respectively. Denote by $ M,N$ the midpoints of $ BC,AD.$ $ (1)$: If four points $ A,B,C,D$ lie on one circle, then $ EM\cdot FN \equal{} EN\cdot FM.$ $ (2)$: Determine whether the converse of $ (1)$ is true or not, justify your answer.

2010 Germany Team Selection Test, 2

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2010 Dutch IMO TST, 4

Let $ABCD$ be a cyclic quadrilateral satisfying $\angle ABD = \angle DBC$. Let $E$ be the intersection of the diagonals $AC$ and $BD$. Let $M$ be the midpoint of $AE$, and $N$ be the midpoint of $DC$. Show that $MBCN$ is a cyclic quadrilateral.

2014 Greece JBMO TST, 2

Let $ABCD$ be an inscribed quadrilateral in a circle $c(O,R)$ (of circle $O$ and radius $R$). With centers the vertices $A,B,C,D$, we consider the circles $C_{A},C_{B},C_{C},C_{D}$ respectively, that do not intersect to each other . Circle $C_{A}$ intersects the sides of the quadrilateral at points $A_{1} , A_{2}$ , circle $C_{B}$ intersects the sides of the quadrilateral at points $B_{1} , B_{2}$ , circle $C_{C}$ at points $C_{1} , C_{2}$ and circle $C_{D}$ at points $C_{1} , C_{2}$ . Prove that the quadrilateral defined by lines $A_{1}A_{2} , B_{1}B_{2} , C_{1}C_{2} , D_{1}D_{2}$ is cyclic.

2010 AMC 12/AHSME, 25

Two quadrilaterals are considered the same if one can be obtained from the other by a rotation and a translation. How many different convex cyclic quadrilaterals are there with integer sides and perimeter equal to $ 32$? $ \textbf{(A)}\ 560 \qquad \textbf{(B)}\ 564 \qquad \textbf{(C)}\ 568 \qquad \textbf{(D)}\ 1498 \qquad \textbf{(E)}\ 2255$

Kvant 2020, M2600

Let $ABCD$ be an inscribed quadrilateral. Let the circles with diameters $AB$ and $CD$ intersect at two points $X_1$ and $Y_1$, the circles with diameters $BC$ and $AD$ intersect at two points $X_2$ and $Y_2$, the circles with diameters $AC$ and $BD$ intersect at two points $X_3$ and $Y_3$. Prove that the lines $X_1Y_1, X_2Y_2$ and $X_3Y_3$ are concurrent. Maxim Didin

1993 India National Olympiad, 1

The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ intersect at $P$. Let $O$ be the circumcenter of triangle $APB$ and $H$ be the orthocenter of triangle $CPD$. Show that the points $H,P,O$ are collinear.

2005 Sharygin Geometry Olympiad, 11.3

Inside the inscribed quadrilateral $ABCD$ there is a point $K$, the distances from which to the sides $ABCD$ are proportional to these sides. Prove that $K$ is the intersection point of the diagonals of $ABCD$.

2016 Baltic Way, 20

Let $ABCD$ be a cyclic quadrilateral with $AB$ and $CD$ not parallel. Let $M$ be the midpoint of $CD.$ Let $P$ be a point inside $ABCD$ such that $P A = P B = CM.$ Prove that $AB, CD$ and the perpendicular bisector of $MP$ are concurrent.

2005 Switzerland - Final Round, 1

Let $ABC$ be any triangle and $D, E, F$ the midpoints of $BC, CA, AB$. The medians $AD, BE$ and $CF$ intersect at point $S$. At least two of the quadrilaterals $AF SE, BDSF, CESD$ are cyclic. Show that the triangle $ABC$ is equilateral.

2011 India National Olympiad, 5

Let $ABCD$ be a cyclic quadrilateral inscribed in a circle $\Gamma.$ Let $E,F,G,H$ be the midpoints of arcs $AB,BC,CD,AD$ of $\Gamma,$ respectively. Suppose that $AC\cdot BD=EG\cdot FH.$ Show that $AC,BD,EG,FH$ are all concurrent.

2008 IMAC Arhimede, 5

The diagonals of the cyclic quadrilateral $ ABCD$ are intersecting at the point $ E$. $ K$ and $ M$ are the midpoints of $ AB$ and $ CD$, respectively. Let the points $ L$ on $ BC$ and $ N$ on $ AD$ s.t. $ EL\perp BC$ and $ EN\perp AD$.Prove that $ KM\perp LN$.

2017 German National Olympiad, 4

Let $ABCD$ be a cyclic quadrilateral. The point $P$ is chosen on the line $AB$ such that the circle passing through $C,D$ and $P$ touches the line $AB$. Similarly, the point $Q$ is chosen on the line $CD$ such that the circle passing through $A,B$ and $Q$ touches the line $CD$. Prove that the distance between $P$ and the line $CD$ equals the distance between $Q$ and $AB$.

2014 Contests, 2

Let $ABCD$ be a convex cyclic quadrilateral with $AD=BD$. The diagonals $AC$ and $BD$ intersect in $E$. Let the incenter of triangle $\triangle BCE$ be $I$. The circumcircle of triangle $\triangle BIE$ intersects side $AE$ in $N$. Prove \[ AN \cdot NC = CD \cdot BN. \]

2009 Middle European Mathematical Olympiad, 10

Suppose that $ ABCD$ is a cyclic quadrilateral and $ CD\equal{}DA$. Points $ E$ and $ F$ belong to the segments $ AB$ and $ BC$ respectively, and $ \angle ADC\equal{}2\angle EDF$. Segments $ DK$ and $ DM$ are height and median of triangle $ DEF$, respectively. $ L$ is the point symmetric to $ K$ with respect to $ M$. Prove that the lines $ DM$ and $ BL$ are parallel.

2004 Postal Coaching, 1

Let $ABC$ and $DEF$ be two triangles such that $A+ D = 120^{\circ}$ and $B+E = 120^{\circ}$. Suppose they have the same circumradius. Prove that they have the same 'Fermat length'.

2004 Pan African, 3

Let $ABCD$ be a cyclic quadrilateral such that $AB$ is a diameter of it's circumcircle. Suppose that $AB$ and $CD$ intersect at $I$, $AD$ and $BC$ at $J$, $AC$ and $BD$ at $K$, and let $N$ be a point on $AB$. Show that $IK$ is perpendicular to $JN$ if and only if $N$ is the midpoint of $AB$.

Swiss NMO - geometry, 2020.7

Let $ABCD$ be an isosceles trapezoid with bases $AD> BC$. Let $X$ be the intersection of the bisectors of $\angle BAC$ and $BC$. Let $E$ be the intersection of$ DB$ with the parallel to the bisector of $\angle CBD$ through $X$ and let $F$ be the intersection of $DC$ with the parallel to the bisector of $\angle DCB$ through $X$. Show that quadrilateral $AEFD$ is cyclic.

2016 China Team Selection Test, 6

The diagonals of a cyclic quadrilateral $ABCD$ intersect at $P$, and there exist a circle $\Gamma$ tangent to the extensions of $AB,BC,AD,DC$ at $X,Y,Z,T$ respectively. Circle $\Omega$ passes through points $A,B$, and is externally tangent to circle $\Gamma$ at $S$. Prove that $SP\perp ST$.

2018 AMC 12/AHSME, 20

Triangle $ABC$ is an isosceles right triangle with $AB=AC=3$. Let $M$ be the midpoint of hypotenuse $\overline{BC}$. Points $I$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $AI>AE$ and $AIME$ is a cyclic quadrilateral. Given that triangle $EMI$ has area $2$, the length $CI$ can be written as $\frac{a-\sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers and $b$ is not divisible by the square of any prime. What is the value of $a+b+c$? $ \textbf{(A) }9 \qquad \textbf{(B) }10 \qquad \textbf{(C) }11 \qquad \textbf{(D) }12 \qquad \textbf{(E) }13 \qquad $

2017 Germany Team Selection Test, 3

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2020 Junior Balkаn MO, 2

Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$ and let $E$ be the foot of the perpendicular from $A$ to $BC$. Let $Z \ne A$ be a point on the line $AB$ with $AB = BZ$. Let $(c)$ be the circumcircle of the triangle $\triangle AEZ$. Let $D$ be the second point of intersection of $(c)$ with $ZC$ and let $F$ be the antidiametric point of $D$ with respect to $(c)$. Let $P$ be the point of intersection of the lines $FE$ and $CZ$. If the tangent to $(c)$ at $Z$ meets $PA$ at $T$, prove that the points $T$, $E$, $B$, $Z$ are concyclic. Proposed by [i]Theoklitos Parayiou, Cyprus[/i]

2009 Ukraine National Mathematical Olympiad, 3

In triangle $ABC$ points $M, N$ are midpoints of $BC, CA$ respectively. Point $P$ is inside $ABC$ such that $\angle BAP = \angle PCA = \angle MAC .$ Prove that $\angle PNA = \angle AMB .$