This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 670

2003 Korea - Final Round, 1

Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.

2007 Indonesia TST, 1

Let $ ABCD$ be a cyclic quadrilateral and $ O$ be the intersection of diagonal $ AC$ and $ BD$. The circumcircles of triangle $ ABO$ and the triangle $ CDO$ intersect at $ K$. Let $ L$ be a point such that the triangle $ BLC$ is similar to $ AKD$ (in that order). Prove that if $ BLCK$ is a convex quadrilateral, then it has an incircle.

2024 CAPS Match, 4

Let $ABCD$ be a quadrilateral, such that $AB = BC = CD.$ There are points $X, Y$ on rays $CA, BD,$ respectively, such that $BX = CY.$ Let $P, Q, R, S$ be the midpoints of segments $BX, CY ,$ $XD, YA,$ respectively. Prove that points $P, Q, R, S$ lie on a circle.

2014 AIME Problems, 15

In $ \triangle ABC $, $ AB = 3 $, $ BC = 4 $, and $ CA = 5 $. Circle $\omega$ intersects $\overline{AB}$ at $E$ and $B$, $\overline{BC}$ at $B$ and $D$, and $\overline{AC}$ at $F$ and $G$. Given that $EF=DF$ and $\tfrac{DG}{EG} = \tfrac{3}{4}$, length $DE=\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$.

2024 All-Russian Olympiad, 4

A quadrilateral $ABCD$ without parallel sides is inscribed in a circle $\omega$. We draw a line $\ell_a \parallel BC$ through the point $A$, a line $\ell_b \parallel CD$ through the point $B$, a line $\ell_c \parallel DA$ through the point $C$, and a line $\ell_d \parallel AB$ through the point $D$. Suppose that the quadrilateral whose successive sides lie on these four straight lines is inscribed in a circle $\gamma$ and that $\omega$ and $\gamma$ intersect in points $E$ and $F$. Show that the lines $AC, BD$ and $EF$ intersect in one point. [i]Proposed by A. Kuznetsov[/i]

2024 Brazil National Olympiad, 2

Let \( ABC \) be a scalene triangle. Let \( E \) and \( F \) be the midpoints of sides \( AC \) and \( AB \), respectively, and let \( D \) be any point on segment \( BC \). The circumcircles of triangles \( BDF \) and \( CDE \) intersect line \( EF \) at points \( K \neq F \), and \( L \neq E \), respectively, and intersect at points \( X \neq D \). The point \( Y \) is on line \( DX \) such that \( AY \) is parallel to \( BC \). Prove that points \( K \), \( L \), \( X \), and \( Y \) lie on the same circle.

2022 Saudi Arabia IMO TST, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2008 Oral Moscow Geometry Olympiad, 4

A circle can be circumscribed around the quadrilateral $ABCD$. Point $P$ is the foot of the perpendicular drawn from point $A$ on line $BC$, and respectively $Q$ from $A$ on $DC$, $R$ from $D$ on $AB$ and $T$ from $D$ on $BC$ . Prove that points $P,Q,R$ and $T$ lie on the same circle. (A. Myakishev)

2001 Junior Balkan Team Selection Tests - Romania, 1

Let $ABC$ be an arbitrary triangle. A circle passes through $B$ and $C$ and intersects the lines $AB$ and $AC$ at $D$ and $E$, respectively. The projections of the points $B$ and $E$ on $CD$ are denoted by $B'$ and $E'$, respectively. The projections of the points $D$ and $C$ on $BE$ are denoted by $D'$ and $C'$, respectively. Prove that the points $B',D',E'$ and $C'$ lie on the same circle.

2013 ELMO Shortlist, 9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$. [i]Proposed by Allen Liu[/i]

2020 Junior Balkan Team Selection Tests - Moldova, 6

The inscribed circle inside triangle $ABC$ intersects side $AB$ in $D$. The inscribed circle inside triangle $ADC$ intersects sides $AD$ in $P$ and $AC$ in $Q$.The inscribed circle inside triangle $BDC$ intersects sides $BC$ in $M$ and $BD$ in $N$. Prove that $P , Q, M, N$ are cyclic.

2015 USAJMO, 5

Let $ABCD$ be a cyclic quadrilateral. Prove that there exists a point $X$ on segment $\overline{BD}$ such that $\angle BAC=\angle XAD$ and $\angle BCA=\angle XCD$ if and only if there exists a point $Y$ on segment $\overline{AC}$ such that $\angle CBD=\angle YBA$ and $\angle CDB=\angle YDA$.

2017 Korea - Final Round, 5

Let there be cyclic quadrilateral $ABCD$ with $L$ as the midpoint of $AB$ and $M$ as the midpoint of $CD$. Let $AC \cap BD = E$, and let rays $AB$ and $DC$ meet again at $F$. Let $LM \cap DE = P$. Let $Q$ be the foot of the perpendicular from $P$ to $EM$. If the orthocenter of $\triangle FLM$ is $E$, prove the following equality. $$\frac{EP^2}{EQ} = \frac{1}{2} \left( \frac{BD^2}{DF} - \frac{BC^2}{CF} \right)$$

1987 Czech and Slovak Olympiad III A, 1

Given a trapezoid, divide it by a line into two quadrilaterals in such a way that both of them are cyclic with the same circumradius. Discuss conditions of solvability.

1989 ITAMO, 4

Points $A,M,B,C,D$ are given on a circle in this order such that $A$ and $B$ are equidistant from $M$. Lines $MD$ and $AC$ intersect at $E$ and lines $MC$ and $BD$ intersect at $F$. Prove that the quadrilateral $CDEF$ is inscridable in a circle.

2019 Yasinsky Geometry Olympiad, p3

In the quadrilateral $ABCD$, the angles $B$ and $D$ are right . The diagonal $AC$ forms with the side $AB$ the angle of $40^o$, as well with side $AD$ an angle of $30^o$. Find the acute angle between the diagonals $AC$ and $BD$.

2003 IMO, 4

Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.

2018 CHKMO, 2

Suppose $ABCD$ is a cyclic quadrilateral. Extend $DA$ and $DC$ to $P$ and $Q$ respectively such that $AP=BC$ and $CQ=AB$. Let $M$ be the midpoint of $PQ$. Show that $MA\perp MC$.

2005 China Team Selection Test, 2

Cyclic quadrilateral $ABCD$ has positive integer side lengths $AB$, $BC$, $CA$, $AD$. It is known that $AD=2005$, $\angle{ABC}=\angle{ADC} = 90^o$, and $\max \{ AB,BC,CD \} < 2005$. Determine the maximum and minimum possible values for the perimeter of $ABCD$.

1990 IMO Longlists, 76

Prove that there exist at least two non-congruent quadrilaterals, both having a circumcircle, such that they have equal perimeters and areas.

2015 Peru Cono Sur TST, P8

Let $ABCD$ be a cyclic quadrilateral such that the lines $AB$ and $CD$ intersects in $K$, let $M$ and $N$ be the midpoints of $AC$ and $CK$ respectively. Find the possible value(s) of $\angle ADC$ if the quadrilateral $MBND$ is cyclic.

2014 Switzerland - Final Round, 1

The points $A, B, C$ and $D$ lie in this order on the circle $k$. Let $t$ be the tangent at $k$ through $C$ and $s$ the reflection of $AB$ at $AC$. Let $G$ be the intersection of the straight line $AC$ and $BD$ and $H$ the intersection of the straight lines $s$ and $CD$. Show that $GH$ is parallel to $t$.

2005 All-Russian Olympiad Regional Round, 9.4

9.4, 10.3 Let $I$ be an incenter of $ABC$ ($AB<BC$), $M$ is a midpoint of $AC$, $N$ is a midpoint of circumcircle's arc $ABC$. Prove that $\angle IMA=\angle INB$. ([i]A. Badzyan[/i])

2005 Morocco TST, 4

Consider a cyclic quadrilateral $ABCD$, and let $S$ be the intersection of $AC$ and $BD$. Let $E$ and $F$ the orthogonal projections of $S$ on $AB$ and $CD$ respectively. Prove that the perpendicular bisector of segment $EF$ meets the segments $AD$ and $BC$ at their midpoints.

2019 Dutch IMO TST, 1

Let $ABCD$ be a cyclic quadrilateral (In the same order) inscribed into the circle $\odot (O)$. Let $\overline{AC}$ $\cap$ $\overline{BD}$ $=$ $E$. A randome line $\ell$ through $E$ intersects $\overline{AB}$ at $P$ and $BC$ at $Q$. A circle $\omega$ touches $\ell$ at $E$ and passes through $D$. Given, $\omega$ $\cap$ $\odot (O)$ $=$ $R$. Prove, Points $B,Q,R,P$ are concyclic.