This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 121

2009 Junior Balkan Team Selection Tests - Romania, 2

Let $ABCD$ be a quadrilateral. The diagonals $AC$ and $BD$ are perpendicular at point $O$. The perpendiculars from $O$ on the sides of the quadrilateral meet $AB, BC, CD, DA$ at $M, N, P, Q$, respectively, and meet again $CD, DA, AB, BC$ at $M', N', P', Q'$, respectively. Prove that points $M, N, P, Q, M', N', P', Q'$ are concyclic. Cosmin Pohoata

2005 Slovenia Team Selection Test, 1

The diagonals of a convex quadrilateral $ABCD$ intersect at $M$. The bisector of $\angle ACD$ intersects the ray $BA$ at $K$. Prove that if $MA\cdot MC + MA\cdot CD = MB \cdot MD $, then $\angle BKC = \angle BDC$

2018 Sharygin Geometry Olympiad, 6

Let $ABCD$ be a circumscribed quadrilateral. Prove that the common point of the diagonals, the incenter of triangle $ABC$ and the centre of excircle of triangle $CDA$ touching the side $AC$ are collinear.

2007 Sharygin Geometry Olympiad, 2

Each diagonal of a quadrangle divides it into two isosceles triangles. Is it true that the quadrangle is a diamond?

2011 Abels Math Contest (Norwegian MO), 2b

The diagonals $AD, BE$, and $CF$ of a convex hexagon $ABCDEF$ intersect in a common point. Show that $a(ABE) a(CDA) a(EFC) = a(BCE) a(DEA) a(FAC)$, where $a(KLM)$ is the area of the triangle $KLM$. [img]https://cdn.artofproblemsolving.com/attachments/0/a/bcbbddedde159150fe3c26b1f0a2bfc322aa1a.png[/img]

1991 Austrian-Polish Competition, 6

Suppose that there is a point $P$ inside a convex quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have equal areas. Prove that one of the diagonals bisects the area of $ABCD$.

1988 Tournament Of Towns, (166) 3

(a) The vertices of a regular $10$-gon are painted in turn black and white. Two people play the following game . Each in turn draws a diagonal connecting two vertices of the same colour . These diagonals must not intersect . The winner is the player who is able to make the last move. Who will win if both players adopt the best strategy? (b) Answer the same question for the regular $12$-gon . (V.G. Ivanov)

2009 Chile National Olympiad, 2

Tags: diagonal , geometry
Consider $P$ a regular $9$-sided convex polygon with each side of length $1$. A diagonal at $P$ is any line joining two non-adjacent vertices of $P$. Calculate the difference between the lengths of the largest and smallest diagonal of $P$.

2011 Abels Math Contest (Norwegian MO), 2a

In the quadrilateral $ABCD$ the side $AB$ has length $7, BC$ length $14, CD$ length $26$, and $DA$ length $23$. Show that the diagonals are perpendicular. You may assume that the quadrilateral is convex (all internal angles are less than $180^o$).

1974 All Soviet Union Mathematical Olympiad, 191

a) Each of the side of the convex hexagon is longer than $1$. Does it necessary have a diagonal longer than $2$? b) Each of the main diagonals of the convex hexagon is longer than $2$. Does it necessary have a side longer than $1$?

2017 Korea National Olympiad, problem 1

Denote $U$ as the set of $20$ diagonals of the regular polygon $P_1P_2P_3P_4P_5P_6P_7P_8$. Find the number of sets $S$ which satisfies the following conditions. 1. $S$ is a subset of $U$. 2. If $P_iP_j \in S$ and $P_j P_k \in S$, and $i \neq k$, $P_iP_k \in S$.

2007 Sharygin Geometry Olympiad, 14

In a trapezium with bases $AD$ and $BC$, let $P$ and $Q$ be the middles of diagonals $AC$ and $BD$ respectively. Prove that if $\angle DAQ = \angle CAB$ then $\angle PBA = \angle DBC$.

2013 Dutch Mathematical Olympiad, 3

The sides $BC$ and $AD$ of a quadrilateral $ABCD$ are parallel and the diagonals intersect in $O$. For this quadrilateral $|CD| =|AO|$ and $|BC| = |OD|$ hold. Furthermore $CA$ is the angular bisector of angle $BCD$. Determine the size of angle $ABC$. [asy] unitsize(1 cm); pair A, B, C, D, O; D = (0,0); B = 3*dir(180 + 72); C = 3*dir(180 + 72 + 36); A = extension(D, D + (1,0), C, C + dir(180 - 36)); O = extension(A, C, B, D); draw(A--B--C--D--cycle); draw(B--D); draw(A--C); dot("$A$", A, N); dot("$B$", B, SW); dot("$C$", C, SE); dot("$D$", D, N); dot("$O$", O, E); [/asy] Attention: the figure is not drawn to scale.

1984 Tournament Of Towns, (070) T4

Inside a rectangle is inscribed a quadrilateral, which has a vertex on each side of the rectangle. Prove that the perimeter of the inscribed quadrilateral is not smaller than double the length of a diagonal of the rectangle. (V. V . Proizvolov , Moscow)

2020 Nordic, 3

Each of the sides $AB$ and $CD$ of a convex quadrilateral $ABCD$ is divided into three equal parts, $|AE| = |EF| = |F B|$ , $|DP| = |P Q| = |QC|$. The diagonals of $AEPD$ and $FBCQ$ intersect at $M$ and $N$, respectively. Prove that the sum of the areas of $\vartriangle AMD$ and $\vartriangle BNC$ is equal to the sum of the areas of $\vartriangle EPM$ and $\vartriangle FNQ$.

1955 Moscow Mathematical Olympiad, 294

a) A square table with $49$ small squares is filled with numbers $1$ to $7$ so that in each row and in each column all numbers from $1$ to $7$ are present. Let the table be symmetric through the main diagonal. Prove that on this diagonal all the numbers $1, 2, 3, . . . , 7$ are present. b) A square table with $n^2$ small squares is filled with numbers $1$ to $n$ so that in each row and in each column all numbers from $1$ to $n$ are present. Let $n$ be odd and the table be symmetric through the main diagonal. Prove that on this diagonal all the numbers $1, 2, 3, . . . , n$ are present.

1968 All Soviet Union Mathematical Olympiad, 099

Tags: diagonal , geometry
The difference between the maximal and the minimal diagonals of the regular $n$-gon equals to its side ( $n > 5$ ). Find $n$.

2007 Hanoi Open Mathematics Competitions, 3

Tags: geometry , diagonal
Which of the following is a possible number of diagonals of a convex polygon? (A) $02$ (B) $21$ (C) $32$ (D) $54$ (E) $63$

1997 Nordic, 2

Let $ABCD$ be a convex quadrilateral. We assume that there exists a point $P$ inside the quadrilateral such that the areas of the triangles $ABP, BCP, CDP$, and $DAP$ are equal. Show that at least one of the diagonals of the quadrilateral bisects the other diagonal.

2023 AMC 12/AHSME, 13

A rectangular box $\mathcal{P}$ has distinct edge lengths $a, b,$ and $c$. The sum of the lengths of all $12$ edges of $\mathcal{P}$ is $13$, the sum of the areas of all $6$ faces of $\mathcal{P}$ is $\frac{11}{2}$, and the volume of $\mathcal{P}$ is $\frac{1}{2}$. What is the length of the longest interior diagonal connecting two vertices of $\mathcal{P}$? $\textbf{(A)}~2\qquad\textbf{(B)}~\frac{3}{8}\qquad\textbf{(C)}~\frac{9}{8}\qquad\textbf{(D)}~\frac{9}{4}\qquad\textbf{(E)}~\frac{3}{2}$

2016 Sharygin Geometry Olympiad, 7

Diagonals of a quadrilateral $ABCD$ are equal and meet at point $O$. The perpendicular bisectors to segments $AB$ and $CD$ meet at point $P$, and the perpendicular bisectors to $BC$ and $AD$ meet at point $Q$. Find angle $\angle POQ$. by A.Zaslavsky

2015 Estonia Team Selection Test, 8

Find all positive integers $n$ for which it is possible to partition a regular $n$-gon into triangles with diagonals not intersecting inside the $n$-gon such that at every vertex of the $n$-gon an odd number of triangles meet.

2014 Contests, 3

Is there a convex pentagon in which each diagonal is equal to a side?

2005 Sharygin Geometry Olympiad, 9.1

The quadrangle $ABCD$ is inscribed in a circle whose center $O$ lies inside it. Prove that if $\angle BAO = \angle DAC$, then the diagonals of the quadrilateral are perpendicular.

1998 Tournament Of Towns, 4

All the diagonals of a regular $25$-gon are drawn. Prove that no $9$ of the diagonals pass through one interior point of the $25$-gon. (A Shapovalov)