This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 121

2006 Spain Mathematical Olympiad, 3

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ intersect at $E$. Denotes by $S_1,S_2$ and $S$ the areas of the triangles $ABE$, $CDE$ and the quadrilateral $ABCD$ respectively. Prove that $\sqrt{S_1}+\sqrt{S_2}\le \sqrt{S}$ . When equality is reached?

2005 Sharygin Geometry Olympiad, 11.3

Inside the inscribed quadrilateral $ABCD$ there is a point $K$, the distances from which to the sides $ABCD$ are proportional to these sides. Prove that $K$ is the intersection point of the diagonals of $ABCD$.

2008 Switzerland - Final Round, 8

Let $ABCDEF$ be a convex hexagon inscribed in a circle . Prove that the diagonals $AD, BE$ and $CF$ intersect at one point if and only if $$\frac{AB}{BC} \cdot \frac{CD}{DE}\cdot \frac{EF}{FA}=1$$

1995 Czech and Slovak Match, 5

The diagonals of a convex quadrilateral $ABCD$ are orthogonal and intersect at point $E$. Prove that the reflections of $E$ in the sides of quadrilateral $ABCD$ lie on a circle.

2011 Sharygin Geometry Olympiad, 8

A convex $n$-gon $P$, where $n > 3$, is dissected into equal triangles by diagonals non-intersecting inside it. Which values of $n$ are possible, if $P$ is circumscribed?

1998 Tournament Of Towns, 5

A square is divided into $25$ small squares. We draw diagonals of some of the small squares so that no two diagonals share a common point (not even a common endpoint). What is the largest possible number of diagonals that we can draw? (I Rubanov)

2017 Czech-Polish-Slovak Junior Match, 2

Decide if exists a convex hexagon with all sides longer than $1$ and all nine of its diagonals are less than $2$ in length.

2014 Hanoi Open Mathematics Competitions, 2

How many diagonals does $11$-sided convex polygon have?

2006 Sharygin Geometry Olympiad, 10

At what $n$ can a regular $n$-gon be cut by disjoint diagonals into $n- 2$ isosceles (including equilateral) triangles?

2011 District Olympiad, 2

The isosceles trapezoid $ABCD$ has perpendicular diagonals. The parallel to the bases through the intersection point of the diagonals intersects the non-parallel sides $[BC]$ and $[AD]$ in the points $P$, respectively $R$. The point $Q$ is symmetric of the point $P$ with respect to the midpoint of the segment $[BC]$. Prove that: a) $QR = AD$, b) $QR \perp AD$.

2011 Tournament of Towns, 4

Each diagonal of a convex quadrilateral divides it into two isosceles triangles. The two diagonals of the same quadrilateral divide it into four isosceles triangles. Must this quadrilateral be a square?

1987 All Soviet Union Mathematical Olympiad, 458

The convex $n$-gon ($n\ge 5$) is cut along all its diagonals. Prove that there are at least a pair of parts with the different areas.

2011 Sharygin Geometry Olympiad, 1

The diagonals of a trapezoid are perpendicular, and its altitude is equal to the medial line. Prove that this trapezoid is isosceles

Brazil L2 Finals (OBM) - geometry, 2010.5

The diagonals of an cyclic quadrilateral $ABCD$ intersect at $O$. The circumcircles of triangle $AOB$ and $COD$ intersect lines $BC$ and $AD$, for the second time, at points $M, N, P$and $Q$. Prove that the $MNPQ$ quadrilateral is inscribed in a circle of center $O$.

1953 Moscow Mathematical Olympiad, 245

A quadrilateral is circumscribed around a circle. Its diagonals intersect at the center of the circle. Prove that the quadrilateral is a rhombus.

1985 Tournament Of Towns, (104) 1

We are given a convex quadrilateral and point $M$ inside it . The perimeter of the quadrilateral has length $L$ while the lengths of the diagonals are $D_1$ and $D_2$. Prove that the sum of the distances from $M$ to the vertices of the quadrilateral are not greater than $L + D_1 + D_2$ . (V. Prasolov)

2012 Lusophon Mathematical Olympiad, 6

A quadrilateral $ABCD$ is inscribed in a circle of center $O$. It is known that the diagonals $AC$ and $BD$ are perpendicular. On each side we build semicircles, externally, as shown in the figure. a) Show that the triangles $AOB$ and $COD$ have the equal areas. b) If $AC=8$ cm and $BD= 6$ cm, determine the area of the shaded region.

2004 Tournament Of Towns, 3

Perimeter of a convex quadrilateral is $2004$ and one of its diagonals is $1001$. Can another diagonal be $1$ ? $2$ ? $1001$ ?

1966 IMO Shortlist, 53

Prove that in every convex hexagon of area $S$ one can draw a diagonal that cuts off a triangle of area not exceeding $\frac{1}{6}S.$

2004 Chile National Olympiad, 3

The perimeter, that is, the sum of the lengths of all sides of a convex quadrilateral $ ABCD $, is equal to $2004$ meters; while the length of its diagonal $ AC $ is equal to $1001$ meters. Find out if the length of the other diagonal $ BD $ can: a) To be equal to only one meter. b) Be equal to the length of the diagonal $ AC $.

1975 All Soviet Union Mathematical Olympiad, 209

Denote the midpoints of the convex hexagon $A_1A_2A_3A_4A_5A_6$ diagonals $A_6A_2$, $A_1A_3$, $A_2A_4$, $A_3A_5$, $A_4A_6$, $A_5A_1$ as $B_1, B_2, B_3, B_4, B_5, B_6$ respectively. Prove that if the hexagon $B_1B_2B_3B_4B_5B_6$ is convex, than its area equals to the quarter of the initial hexagon.

2015 Middle European Mathematical Olympiad, 2

Let $n\ge 3$ be an integer. An [i]inner diagonal[/i] of a [i]simple $n$-gon[/i] is a diagonal that is contained in the $n$-gon. Denote by $D(P)$ the number of all inner diagonals of a simple $n$-gon $P$ and by $D(n)$ the least possible value of $D(Q)$, where $Q$ is a simple $n$-gon. Prove that no two inner diagonals of $P$ intersect (except possibly at a common endpoint) if and only if $D(P)=D(n)$. [i]Remark:[/i] A simple $n$-gon is a non-self-intersecting polygon with $n$ vertices. A polygon is not necessarily convex.

1992 IMO Shortlist, 5

A convex quadrilateral has equal diagonals. An equilateral triangle is constructed on the outside of each side of the quadrilateral. The centers of the triangles on opposite sides are joined. Show that the two joining lines are perpendicular. [i]Alternative formulation.[/i] Given a convex quadrilateral $ ABCD$ with congruent diagonals $ AC \equal{} BD.$ Four regular triangles are errected externally on its sides. Prove that the segments joining the centroids of the triangles on the opposite sides are perpendicular to each other. [i]Original formulation:[/i] Let $ ABCD$ be a convex quadrilateral such that $ AC \equal{} BD.$ Equilateral triangles are constructed on the sides of the quadrilateral. Let $ O_1,O_2,O_3,O_4$ be the centers of the triangles constructed on $ AB,BC,CD,DA$ respectively. Show that $ O_1O_3$ is perpendicular to $ O_2O_4.$

2011 Oral Moscow Geometry Olympiad, 3

A $2\times 2$ square was cut from a squared sheet of paper. Using only a ruler without divisions and without going beyond the square, divide the diagonal of the square into $6$ equal parts.

1988 Tournament Of Towns, (176) 2

Two isosceles trapezoids are inscribed in a circle in such a way that each side of each trapezoid is parallel to a certain side of the other trapezoid . Prove that the diagonals of one trapezoid are equal to the diagonals of the other.