This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 121

2009 Oral Moscow Geometry Olympiad, 1

Are there two such quadrangles that the sides of the first are less than the corresponding sides of the second, and the corresponding diagonals are larger? (Arseniy Akopyan)

2006 Sharygin Geometry Olympiad, 9.6

A convex quadrilateral $ABC$ is given. $A',B',C',D'$ are the orthocenters of triangles $BCD, CDA, DAB, ABC$ respectively. Prove that in the quadrilaterals $ABCP$ and $A'B'C'D'$, the corresponding diagonals share the intersection points in the same ratio.

2011 Sharygin Geometry Olympiad, 10

The diagonals of trapezoid $ABCD$ meet at point $O$. Point $M$ of lateral side $CD$ and points $P, Q$ of bases $BC$ and $AD$ are such that segments $MP$ and $MQ$ are parallel to the diagonals of the trapezoid. Prove that line $PQ$ passes through point $O$.

2024 Brazil National Olympiad, 3

Let \( n \geq 3 \) be a positive integer. In a convex polygon with \( n \) sides, all the internal bisectors of its \( n \) internal angles are drawn. Determine, as a function of \( n \), the smallest possible number of distinct lines determined by these bisectors.

1997 Estonia National Olympiad, 3

Each diagonal of a convex pentagon is parallel to one of its sides. Prove that the ratio of the length of each diagonal to the length of the corresponding parallel side is the same, and find this ratio.

1970 All Soviet Union Mathematical Olympiad, 131

How many sides of the convex polygon can equal its longest diagonal?

2012 Sharygin Geometry Olympiad, 4

Determine all integer $n > 3$ for which a regular $n$-gon can be divided into equal triangles by several (possibly intersecting) diagonals. (B.Frenkin)

2023 AMC 10, 17

A rectangular box $\mathcal{P}$ has distinct edge lengths $a, b,$ and $c$. The sum of the lengths of all $12$ edges of $\mathcal{P}$ is $13$, the sum of the areas of all $6$ faces of $\mathcal{P}$ is $\frac{11}{2}$, and the volume of $\mathcal{P}$ is $\frac{1}{2}$. What is the length of the longest interior diagonal connecting two vertices of $\mathcal{P}$? $\textbf{(A)}~2\qquad\textbf{(B)}~\frac{3}{8}\qquad\textbf{(C)}~\frac{9}{8}\qquad\textbf{(D)}~\frac{9}{4}\qquad\textbf{(E)}~\frac{3}{2}$

2002 Junior Balkan Team Selection Tests - Romania, 2

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ meet at $O$. Let $m$ be the measure of the acute angle formed by these diagonals. A variable angle $xOy$ of measure $m$ intersects the quadrilateral by a convex quadrilateral of constant area. Prove that $ABCD$ is a square.

1993 Romania Team Selection Test, 3

Suppose that each of the diagonals $AD,BE,CF$ divides the hexagon $ABCDEF$ into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?

2009 Balkan MO Shortlist, G3

Let $ABCD$ be a convex quadrilateral, and $P$ be a point in its interior. The projections of $P$ on the sides of the quadrilateral lie on a circle with center $O$. Show that $O$ lies on the line through the midpoints of $AC$ and $BD$.

2015 Estonia Team Selection Test, 8

Find all positive integers $n$ for which it is possible to partition a regular $n$-gon into triangles with diagonals not intersecting inside the $n$-gon such that at every vertex of the $n$-gon an odd number of triangles meet.

2014 Contests, 3

Let $ABCD$ be a convex quadrilateral with perpendicular diagonals. If $AB = 20, BC = 70$ and $CD = 90$, then what is the value of $DA$?

1990 All Soviet Union Mathematical Olympiad, 512

The line joining the midpoints of two opposite sides of a convex quadrilateral makes equal angles with the diagonals. Show that the diagonals are equal.

1995 Bundeswettbewerb Mathematik, 3

Each diagonal of a convex pentagon is parallel to one side of the pentagon. Prove that the ratio of the length of a diagonal to that of its corresponding side is the same for all five diagonals, and compute this ratio.

2014 Sharygin Geometry Olympiad, 3

Do there exist convex polyhedra with an arbitrary number of diagonals (a diagonal is a segment joining two vertices of a polyhedron and not lying on the surface of this polyhedron)? (A. Blinkov)

2010 Sharygin Geometry Olympiad, 3

All sides of a convex polygon were decreased in such a way that they formed a new convex polygon. Is it possible that all diagonals were increased?

1993 Moldova Team Selection Test, 2

A convex quadrilateral has equal diagonals. An equilateral triangle is constructed on the outside of each side of the quadrilateral. The centers of the triangles on opposite sides are joined. Show that the two joining lines are perpendicular. [i]Alternative formulation.[/i] Given a convex quadrilateral $ ABCD$ with congruent diagonals $ AC \equal{} BD.$ Four regular triangles are errected externally on its sides. Prove that the segments joining the centroids of the triangles on the opposite sides are perpendicular to each other. [i]Original formulation:[/i] Let $ ABCD$ be a convex quadrilateral such that $ AC \equal{} BD.$ Equilateral triangles are constructed on the sides of the quadrilateral. Let $ O_1,O_2,O_3,O_4$ be the centers of the triangles constructed on $ AB,BC,CD,DA$ respectively. Show that $ O_1O_3$ is perpendicular to $ O_2O_4.$

2017 Yasinsky Geometry Olympiad, 4

Diagonals of trapezium $ABCD$ are mutually perpendicular and the midline of the trapezium is $5$. Find the length of the segment that connects the midpoints of the bases of the trapezium.

2019 Oral Moscow Geometry Olympiad, 2

The angles of one quadrilateral are equal to the angles another quadrilateral. In addition, the corresponding angles between their diagonals are equal. Are these quadrilaterals necessarily similar?

2021 Polish Junior MO First Round, 6

In the convex $(2n+2) $-gon are drawn $n^2$ diagonals. Prove that one of these of diagonals cuts the $(2n+2)$ -gon into two polygons, each of which has an odd number vertices.