This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 180

1974 IMO Longlists, 45

The sum of the squares of five real numbers $a_1, a_2, a_3, a_4, a_5$ equals $1$. Prove that the least of the numbers $(a_i - a_j)^2$, where $i, j = 1, 2, 3, 4,5$ and $i \neq j$, does not exceed $\frac{1}{10}.$

2013 Sharygin Geometry Olympiad, 8

Three cyclists ride along a circular road with radius $1$ km counterclockwise. Their velocities are constant and different. Does there necessarily exist (in a sufficiently long time) a moment when all the three distances between cyclists are greater than $1$ km? by V. Protasov

2001 Estonia Team Selection Test, 2

Point $X$ is taken inside a regular $n$-gon of side length $a$. Let $h_1,h_2,...,h_n$ be the distances from $X$ to the lines defined by the sides of the $n$-gon. Prove that $\frac{1}{h_1}+\frac{1}{h_2}+...+\frac{1}{h_n}>\frac{2\pi}{a}$

1978 Putnam, A6

Let $n$ distinct points in the plane be given. Prove that fewer than $2 n^{3 \slash 2}$ pairs of them are a unit distance apart.

2008 Junior Balkan Team Selection Tests - Moldova, 7

In an acute triangle $ABC$, points $A_1, B_1, C_1$ are the midpoints of the sides $BC, AC, AB$, respectively. It is known that $AA_1 = d(A_1, AB) + d(A_1, AC)$, $BB1 = d(B_1, AB) + d(A_1, BC)$, $CC_1 = d(C_1, AC) + d(C_1, BC)$, where $d(X, Y Z)$ denotes the distance from point $X$ to the line $YZ$. Prove, that triangle $ABC$ is equilateral.

2020 May Olympiad, 3

Tags: geometry , distance
A clueless ant makes the following route: starting at point $ A $ goes $ 1$ cm north, then $ 2$ cm east, then $ 3$ cm south, then $ 4$ cm west, immediately $ 5$ cm north, continues $ 6$ cm east, and so on, finally $ 41$ cm north and ends in point $ B $. Calculate the distance between $ A $ and $ B $ (in a straight line).

Novosibirsk Oral Geo Oly VIII, 2019.1

Kikoriki live on the shores of a pond in the form of an equilateral triangle with a side of $600$ m, Krash and Wally live on the same shore, $300$ m from each other. In summer, Dokko to Krash walk $900$ m, and Wally to Rosa - also $900$ m. Prove that in winter, when the pond freezes and it will be possible to walk directly on the ice, Dokko will walk as many meters to Krash as Wally to Rosa. [url=https://en.wikipedia.org/wiki/Kikoriki]about Kikoriki/GoGoRiki / Smeshariki [/url]

Denmark (Mohr) - geometry, 2011.2

In the octagon below all sides have the length $1$ and all angles are equal. Determine the distance between the corners $A$ and $B$. [img]https://1.bp.blogspot.com/-i6TAFDvcQ8w/XzXCRhnV_kI/AAAAAAAAMVw/rKrQMfPYYJIaCwl8hhdVHdqO4fIn8O7cwCLcBGAsYHQ/s0/2011%2BMogh%2Bp2.png[/img]

1995 May Olympiad, 4

Consider a pyramid whose base is an equilateral triangle $BCD$ and whose other faces are triangles isosceles, right at the common vertex $A$. An ant leaves the vertex $B$ arrives at a point $P$ of the $CD$ edge, from there goes to a point $Q$ of the edge $AC$ and returns to point $B$. If the path you made is minimal, how much is the angle $PQA$ ?

1995 Tuymaada Olympiad, 8

Inside the triangle $ABC$ a point $M$ is given . Find the points $P,Q$ and $R$ lying on the sides $AB,BC$ and $AC$ respectively and such so that the sum $MP+PQ+QR+RM$ is the smallest.

2013 Sharygin Geometry Olympiad, 2

Two circles $\omega_1$ and $\omega_2$ with centers $O_1$ and $O_2$ meet at points $A$ and $B$. Points $C$ and $D$ on $\omega_1$ and $\omega_2$, respectively, lie on the opposite sides of the line $AB$ and are equidistant from this line. Prove that $C$ and $D$ are equidistant from the midpoint of $O_1O_2$.

1957 Moscow Mathematical Olympiad, 350

The distance between towns $A$ and $B$ is $999$ km. At every kilometer of the road that connects $A$ and $B$ a sign shows the distances to $A$ and $B$ as follows: $\fbox{0-999}$ , $\fbox{1-998}$ ,$\fbox{2-997}$ , $ . . . $ , $\fbox{998-1}$ , $\fbox{999-0}$ How many signs are there, with both distances written with the help of only two distinct digits?

2020 Bundeswettbewerb Mathematik, 3

Let $AB$ be the diameter of a circle $k$ and let $E$ be a point in the interior of $k$. The line $AE$ intersects $k$ a second time in $C \ne A$ and the line $BE$ intersects $k$ a second time in $D \ne B$. Show that the value of $AC \cdot AE+BD\cdot BE$ is independent of the choice of $E$.

1976 Vietnam National Olympiad, 5

$L, L'$ are two skew lines in space and $p$ is a plane not containing either line. $M$ is a variable line parallel to $p$ which meets $L$ at $X$ and $L'$ at $Y$. Find the position of $M$ which minimises the distance $XY$. $L''$ is another fixed line. Find the line $M$ which is also perpendicular to $L''$ .

1987 Tournament Of Towns, (145) 2

Α disk of radius $1$ is covered by seven identical disks. Prove that their radii are not less than $\frac12$ .

1959 Putnam, B5

Find the equation of the smallest sphere which is tangent to both of the lines $$\begin{pmatrix} x\\y\\z \end{pmatrix} =\begin{pmatrix} t+1\\ 2t+4\\ -3t +5 \end{pmatrix},\;\;\;\begin{pmatrix} x\\y\\z \end{pmatrix} =\begin{pmatrix} 4t-12\\ -t+8\\ t+17 \end{pmatrix}.$$

1949-56 Chisinau City MO, 23

Tags: distance , geometry , angle
Inside the angle $ABC$ of $60^o$, point $O$ is selected, which is located at distances from the sides of the angle $a$ and $b$, respectively. Determine the distance from the top of the angle to this point.

Novosibirsk Oral Geo Oly VII, 2019.1

Tags: geometry , distance
Lyuba, Tanya, Lena and Ira ran across a flat field. At some point it turned out that among the pairwise distances between them there are distances of $1, 2, 3, 4$ and $5$ meters, and there are no other distances. Give an example of how this could be.

2013 Oral Moscow Geometry Olympiad, 6

Let $ABC$ be a triangle. On its sides $AB$ and $BC$ are fixed points $C_1$ and $A_1$, respectively. Find a point $ P$ on the circumscribed circle of triangle $ABC$ such that the distance between the centers of the circumscribed circles of the triangles $APC_1$ and $CPA_1$ is minimal.

1990 All Soviet Union Mathematical Olympiad, 532

If every altitude of a tetrahedron is at least $1$, show that the shortest distance between each pair of opposite edges is more than $2$.

2014 Romania National Olympiad, 2

Let $ABCDA'B'C'D'$ be a cube with side $AB = a$. Consider points $E \in (AB)$ and $F \in (BC)$ such that $AE + CF = EF$. a) Determine the measure the angle formed by the planes $(D'DE)$ and $(D'DF)$. b) Calculate the distance from $D'$ to the line $EF$.

1997 Poland - Second Round, 6

Let eight points be given in a unit cube. Prove that two of these points are on a distance not greater than $1$.

2011 Denmark MO - Mohr Contest, 2

In the octagon below all sides have the length $1$ and all angles are equal. Determine the distance between the corners $A$ and $B$. [img]https://1.bp.blogspot.com/-i6TAFDvcQ8w/XzXCRhnV_kI/AAAAAAAAMVw/rKrQMfPYYJIaCwl8hhdVHdqO4fIn8O7cwCLcBGAsYHQ/s0/2011%2BMogh%2Bp2.png[/img]

1965 German National Olympiad, 4

Find the locus of points in the plane, the sum of whose distances from the sides of a regular polygon is five times the inradius of the pentagon.

2002 District Olympiad, 3

Consider the equilateral triangle $ABC$ with center of gravity $G$. Let $M$ be a point, inside the triangle and $O$ be the midpoint of the segment $MG$. Three segments go through $M$, each parallel to one side of the triangle and with the ends on the other two sides of the given triangle. a) Show that $O$ is at equal distances from the midpoints of the three segments considered. b) Show that the midpoints of the three segments are the vertices of an equilateral triangle.