Found problems: 52
2011 Indonesia TST, 2
On a line $\ell$ there exists $3$ points $A, B$, and $C$ where $B$ is located between $A$ and $C$. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be circles with $AC, AB$, and $BC$ as diameter respectively; $BD$ is a segment, perpendicular to $\ell$ with $D$ on $\Gamma_1$. Circles $\Gamma_4, \Gamma_5, \Gamma_6$ and $\Gamma_7$ satisfies the following conditions:
$\bullet$ $\Gamma_4$ touches $\Gamma_1, \Gamma_2$, and$ BD$.
$\bullet$ $\Gamma_5$ touches $\Gamma_1, \Gamma_3$, and $BD$.
$\bullet$ $\Gamma_6$ touches $\Gamma_1$ internally, and touches $\Gamma_2$ and $\Gamma_3$ externally.
$\bullet$ $\Gamma_7$ passes through $B$ and the tangent points of $\Gamma_2$ with $\Gamma_6$, and $\Gamma_3$ with $\Gamma_6$.
Show that the circles $\Gamma_4, \Gamma_5$, and $\Gamma_7$ are congruent.
Ukraine Correspondence MO - geometry, 2013.9
Let $E$ be the point of intersection of the diagonals of the cyclic quadrilateral $ABCD$, and let $K, L, M$ and $N$ be the midpoints of the sides $AB, BC, CD$ and $DA$, respectively. Prove that the radii of the circles circumscribed around the triangles $KLE$ and $MNE$ are equal.
1995 Bulgaria National Olympiad, 4
Points $A_1,B_1,C_1$ are selected on the sides $BC$,$CA$,$AB$ respectively of an equilateral triangle $ABC$ in such a way that the inradii of the triangles $C_1AB_1$, $A_1BC_1$, $B_1CA_1$ and $A_1B_1C_1$ are equal. Prove that $A_1,B_1,C_1$ are the midpoints of the corresponding sides.
2006 Oral Moscow Geometry Olympiad, 1
An arbitrary triangle $ABC$ is given. Construct a line that divides it into two polygons, which have equal radii of the circumscribed circles.
(L. Blinkov)
1957 Moscow Mathematical Olympiad, 370
* Three equal circles are tangent to each other externally and to the fourth circle internally. Tangent lines are drawn to the circles from an arbitrary point on the fourth circle. Prove that the sum of the lengths of two tangent lines equals the length of the third tangent.
2007 Switzerland - Final Round, 6
Three equal circles $k_1, k_2, k_3$ intersect non-tangentially at a point $P$. Let $A$ and $B$ be the centers of circles $k_1$ and $k_2$. Let $D$ and $C$ be the intersection of $k_3$ with $k_1$ and $k_2$ respectively, which is different from $P$. Show that $ABCD$ is a parallelogram.
Swiss NMO - geometry, 2007.6
Three equal circles $k_1, k_2, k_3$ intersect non-tangentially at a point $P$. Let $A$ and $B$ be the centers of circles $k_1$ and $k_2$. Let $D$ and $C$ be the intersection of $k_3$ with $k_1$ and $k_2$ respectively, which is different from $P$. Show that $ABCD$ is a parallelogram.
2006 Oral Moscow Geometry Olympiad, 4
An arbitrary triangle $ABC$ is given. Construct a straight line passing through vertex $B$ and dividing it into two triangles, the radii of the inscribed circles of which are equal.
(M. Volchkevich)
2005 Sharygin Geometry Olympiad, 3
Given a circle and a point $K$ inside it. An arbitrary circle equal to the given one and passing through the point $K$ has a common chord with the given circle. Find the geometric locus of the midpoints of these chords.
II Soros Olympiad 1995 - 96 (Russia), 10.6
On sides $BC$, $CA$ and $AB$ of triangle $ABC$, points $A_1$, $B_1$, $C_1$ are taken, respectively, so that the radii of the circles inscribed in triangles $A_1BC_1$, $AB_1C_1$ and $A_1B_1C$ are equal to each other and equal to $r$. The radius of the circle inscribed in triangle $A_1B_1C_1$ is equal to $r_1$. Find the radius of the circle inscribed in triangle $ABC$.
2017 Auckland Mathematical Olympiad, 3
Three equal circles of radius $r$ each pass through the centres of the other two.
What is the area of intersection that is common to all the three circles?
2018 Costa Rica - Final Round, G1
Let $O$ be the center of the circle circumscribed to $\vartriangle ABC$, and let $ P$ be any point on $BC$ ($P \ne B$ and $P \ne C$). Suppose that the circle circumscribed to $\vartriangle BPO$ intersects $AB$ at $R$ ($R \ne A$ and $R \ne B$) and that the circle circumscribed to $\vartriangle COP$ intersects $CA$ at point $Q$ ($Q \ne C$ and $Q \ne A$).
1) Show that $\vartriangle PQR \sim \vartriangle ABC$ and that$ O$ is orthocenter of $\vartriangle PQR$.
2) Show that the circles circumscribed to the triangles $\vartriangle BPO$, $\vartriangle COP$, and $\vartriangle PQR$ all have the same radius.
2013 Czech-Polish-Slovak Junior Match, 6
There is a square $ABCD$ in the plane with $|AB|=a$. Determine the smallest possible radius value of three equal circles to cover a given square.
II Soros Olympiad 1995 - 96 (Russia), 9.10
Two disjoint circles are inscribed in an angle with vertex $A$, whose measure is equal to $a$. The distance between their centers is $d$. A straight line tangent to both circles and not passing through $A$ intersects the sides of the angle at points $B$ and $C$. Find the radius of the circle circumscribed about triangle $ABC$.
1985 All Soviet Union Mathematical Olympiad, 412
One of two circumferences of radius $R$ comes through $A$ and $B$ vertices of the $ABCD$ parallelogram. Another comes through $B$ and $D$. Let $M$ be another point of circumferences intersection. Prove that the circle circumscribed around $AMD$ triangle has radius $R$.
Kyiv City MO Seniors 2003+ geometry, 2011.11.4
On the diagonals $AC$ and $BD$ of the inscribed quadrilateral A$BCD$, the points $X$ and $Y$ are marked, respectively, so that the quadrilateral $ABXY$ is a parallelogram. Prove that the circumscribed circles of triangles $BXD$ and $CYA$ have equal radii.
(Vyacheslav Yasinsky)
IV Soros Olympiad 1997 - 98 (Russia), 10.10
A circle touches the extensions of sides $CA$ and $CB$ of triangle $ABC$, and also touches side $AB$ of this triangle at point $P$. Prove that the radius of the circle tangent to segments $AP$, $CP$ and the circumscribed circle of this triangle is equal to the radius of the inscribed circle in this triangle.
1991 All Soviet Union Mathematical Olympiad, 547
$ABC$ is an acute-angled triangle with circumcenter $O$. The circumcircle of $ABO$ intersects$ AC$ and $BC$ at $M$ and $N$. Show that the circumradii of $ABO$ and $MNC$ are the same.
Denmark (Mohr) - geometry, 1998.1
In the figure shown, the small circles have radius $1$. Calculate the area of the gray part of the figure.
[img]https://1.bp.blogspot.com/-oy-WirJ6u9o/XzcFc3roVDI/AAAAAAAAMX8/qxNy5I_0RWUOxl-ZE52fnrwo0v0T7If9QCLcBGAsYHQ/s0/1998%2BMohr%2Bp1.png[/img]
2012 Switzerland - Final Round, 6
Let $ABCD$ be a parallelogram with at least an angle not equal to $90^o$ and $k$ the circumcircle of the triangle $ABC$. Let $E$ be the diametrically opposite point of $B$. Show that the circumcircle of the triangle $ADE$ and $k$ have the same radius.
2014 BMT Spring, 20
Suppose three circles of radius $5$ intersect at a common point. If the three (other) pairwise intersections between the circles form a triangle of area $ 8$, find the radius of the smallest possible circle containing all three circles.
2023 Assara - South Russian Girl's MO, 4
Two equal circles $\Omega_1$ and $\Omega_2$ intersect at points $A$ and $B$, and $M$ is the midpoint of $AB$. Two rays were drawn from $M$, lying in the same half-plane wrt $AB$ (see figure). The first ray intersects the circles $\Omega_1$ and $\Omega_2$ at points $X_1$ and $X_2$, and the second ray intersects them at points $Y_1$ and $Y_2$, respectively. Let $C$ be the intersection point of straight lines $AX_1$ and $BY_2$, and let $D$ be the intersection point of straight lines $AX_2$ and $BY_1$. Prove that $CD \parallel AB$.
[img]https://cdn.artofproblemsolving.com/attachments/4/a/fae047c3956d8b30f15a9d88e8d12e5f4d48ec.png[/img]
2006 Sharygin Geometry Olympiad, 8.4
Two equal circles intersect at points $A$ and $B$. $P$ is the point of one of the circles that is different from $A$ and $B, X$ and $Y$ are the second intersection points of the lines of $PA, PB$ with the other circle. Prove that the line passing through $P$ and perpendicular to $AB$ divides one of the arcs $XY$ in half.
1923 Eotvos Mathematical Competition, 1
Three circles through the point $O$ and of radius $r$ intersect pairwise in the additional points $A$,$B$,$C$. Prove that the circle through the points $A$, $B$, and $C$ also has radius $r$.
Estonia Open Junior - geometry, 2003.1.2
Circles with centres $O_1$ and $O_2$ intersect in two points, let one of which be $A$. The common tangent of these circles touches them respectively in points $P$ and $Q$. It is known that points $O_1, A$ and $Q$ are on a common straight line and points $O_2, A$ and $P$ are on a common straight line. Prove that the radii of the circles are equal.