Found problems: 509
2018 Switzerland - Final Round, 6
Let $k$ be the incircle of the triangle $ABC$ with the center of the incircle $I$. The circle $k$ touches the sides $BC, CA$ and $AB$ in points $D, E$ and $F$. Let $G$ be the intersection of the straight line $AI$ and the circle $k$, which lies between $A$ and $I$. Assume $BE$ and $FG$ are parallel. Show that $BD = EF$.
2021 Dutch IMO TST, 1
Let $\Gamma$ be the circumscribed circle of a triangle $ABC$ and let $D$ be a point at line segment $BC$. The circle passing through $B$ and $D$ tangent to $\Gamma$ and the circle passing through $C $and $D$ tangent to $\Gamma$ intersect at a point $E \ne D$. The line $DE$ intersects $\Gamma$ at two points $X$ and $Y$ . Prove that $|EX| = |EY|$.
1983 Poland - Second Round, 3
The point $ P $ lies inside the triangle $ ABC $, with $ \measuredangle PAC = \measuredangle PBC $. The points $ L $ and $ M $ are the projections $ P $ onto the lines $ BC $ and $ CA $, respectively, $ D $ is the midpoint of the segment $ AB $. Prove that $ DL = DM $.
2019 Azerbaijan IMO TST, 2
Let $ABC$ ($BC > AC$) be an acute triangle with circumcircle $k$ centered at $O$. The tangent to $k$ at $C$ intersects the line $AB$ at the point $D$. The circumcircles of triangles $BCD, OCD$ and $AOB$ intersect the ray $CA$ (beyond $A$) at the points $Q, P$ and $K$, respectively, such that $P \in (AK)$ and $K \in (PQ)$. The line $PD$ intersects the circumcircle of triangle $BKQ$ at the point $T$, so that $P$ and $T$ are in different halfplanes with respect to $BQ$. Prove that $TB = TQ$.
Kyiv City MO Juniors Round2 2010+ geometry, 2017.7.41
Let $AC$ be the largest side of the triangle $ABC$. The point M is selected on the ray $AC$ ray, and point $N$ on ray $CA$ such that $CN = CB$ and$ AM = AB$ .
a) Prove that $\vartriangle ABC$ is isosceles if we know that $BM = BN$.
b) Will the statement remain true if $AC$ is not necessarily the largest side of triangle $ABC$?
2019 Romania National Olympiad, 3
Let $ABC$ be a triangle in which $\angle ABC = 45^o$ and $\angle BAC > 90^o$. Let $O$ be the midpoint of the side $[BC]$. Consider the point $M \in (AC)$ such that $\angle COM =\angle CAB$. Perpendicular from $M$ on $AC$ intersects line $AB$ at point $P$.
a) Find the measure of the angle $\angle BCP$.
b) Show that if $\angle BAC = 105^o$, then $PB = 2MO$.
2022 Dutch Mathematical Olympiad, 4
In triangle $ABC$, the point $D$ lies on segment $AB$ such that $CD$ is the angle bisector of angle $\angle C$. The perpendicular bisector of segment $CD$ intersects the line $AB$ in $E$. Suppose that $|BE| = 4$ and $|AB| = 5$.
(a) Prove that $\angle BAC = \angle BCE$.
(b) Prove that $2|AD| = |ED|$.
[asy]
unitsize(1 cm);
pair A, B, C, D, E;
A = (0,0);
B = (2,0);
C = (1.8,1.8);
D = extension(C, incenter(A,B,C), A, B);
E = extension((C + D)/2, (C + D)/2 + rotate(90)*(C - D), A, B);
draw((E + (0.5,0))--A--C--B);
draw(C--D);
draw(interp((C + D)/2,E,-0.3)--interp((C + D)/2,E,1.2));
dot("$A$", A, SW);
dot("$B$", B, S);
dot("$C$", C, N);
dot("$D$", D, S);
dot("$E$", E, S);
[/asy]
2018 Estonia Team Selection Test, 7
Let $AD$ be the altitude $ABC$ of an acute triangle. On the line $AD$ are chosen different points $E$ and $F$ so that $|DE |= |DF|$ and point $E$ is in the interior of triangle $ABC$. The circumcircle of triangle $BEF$ intersects $BC$ and $BA$ for second time at points $K$ and $M$ respectively. The circumcircle of the triangle $CEF$ intersects the $CB$ and $CA$ for the second time at points $L$ and $N$ respectively. Prove that the lines $AD, KM$ and $LN$ intersect at one point.
2007 Bulgarian Autumn Math Competition, Problem 11.3
In $\triangle ABC$ we have that $CC_{1}$ is an angle bisector. The points $P\in C_{1}B$, $Q\in BC$, $R\in AC$, $S\in AC_{1}$ satisfy $C_{1}P=PQ=QC$ and $CR=RS=SC_{1}$. Prove that $CC_{1}$ bisects $\angle SCP$.
2013 Tournament of Towns, 5
In a quadrilateral $ABCD$, angle $B$ is equal to $150^o$, angle $C$ is right, and sides $AB$ and $CD$ are equal. Determine the angle between $BC$ and the line connecting the midpoints of sides $BC$ and $AD$.
Durer Math Competition CD 1st Round - geometry, 2014.C2
Above the segments $AB$ and $BC$ we drew a semicircle at each. $F_1$ bisects $AB$ and $F_2$ bisects $BC$. Above the segments $AF_2$ and $F_1C$ we also drew a semicircle at each. Segments $P Q$ and $RS$ touch the corresponding semicircles as shown in the figure. Prove that $P Q \parallel RS$ and $|P Q| = 2 \cdot |RS|$.
[img]https://cdn.artofproblemsolving.com/attachments/8/2/570e923b91e9e630e3880a014cc6df4dc33aa2.png[/img]
2020 Ukrainian Geometry Olympiad - April, 5
Given a convex pentagon $ABCDE$, with $\angle BAC = \angle ABE = \angle DEA - 90^o$, $\angle BCA = \angle ADE$ and also $BC = ED$. Prove that $BCDE$ is parallelogram.
2017 Thailand TSTST, 3
In $\vartriangle ABC$ with $AB > AC$, the tangent to the circumcircle at $A$ intersects line $BC$ at $P$. Let $Q$ be the point on $AB$ such that $AQ = AC$, and $A$ lies between $B$ and $Q$. Let $R$ be the point on ray $AP$ such that $AR = CP$. Let $X, Y$ be the midpoints of $AP, CQ$ respectively. Prove that $CR = 2XY$ .
Indonesia MO Shortlist - geometry, g5
Given a circle $(O)$ with center $O$ and $P$ a point outside $(O)$. $A$ and $B$ are points on $(O)$ such that $PA$ and $PB$ are tangents to $(O)$. The line $\ell$ through $P$ intersects $(O)$ at points $C$ and $D$, respectively ($C$ lies between $P$ and $D$). Line $BF$ is parallel to line $PA$ and intersects line $AC$ and line $AD$ at $E$ and $F$, respectively. Prove that $BE = BF$.
1995 Nordic, 1
Let $AB$ be a diameter of a circle with centre $O$. We choose a point $C$ on the circumference of the circle such that $OC$ and $AB$ are perpendicular to each other. Let $P$ be an arbitrary point on the (smaller) arc $BC$ and let the lines $CP$ and $AB$ meet at $Q$. We choose $R$ on $AP$ so that $RQ$ and $AB$ are perpendicular to each other. Show that $BQ =QR$.
1997 Belarusian National Olympiad, 1
Different points $A_1,A_2,A_3,A_4,A_5$ lie on a circle so that $A_1A_2 = A_2A_3 = A_3A_4 =A_4A_5$. Let $A_6$ be the diametrically opposite point to $A_2$, and $A_7$ be the intersection of $A_1A_5$ and $A_3A_6$. Prove that the lines $A_1A_6$ and $A_4A_7$ are perpendicular
Ukraine Correspondence MO - geometry, 2010.7
An arbitrary point $D$ was marked on the median $BM$ of the triangle $ABC$. It is known that the point $DE\parallel AB$ and $CE \parallel BM$. Prove that $BE = AD$
1997 Tournament Of Towns, (549) 3
In a square $ABCD$, $K$ is a point on the side $BC$ and the bisector of $\angle KAD$ cuts the side $CD$ at the point $M$. Prove that the length of segment $AK$ is equal to the sum of the lengths of segments $DM$ and $BK$.
(Folklore)
Durer Math Competition CD Finals - geometry, 2021.D3
Given a semicirle with center $O$ an arbitrary inner point of the diameter divides it into two segments. Let there be semicircles above the two segments as visible in the below figure. The line $\ell$ passing through the point $A$ intersects the semicircles in $4$ points: $B, C, D$ and $E$. Show that the segments $BC$ and $DE$ have the same length.
[img]https://cdn.artofproblemsolving.com/attachments/1/4/86a369d54fef7e25a51fea6481c0b5e7dd45ff.png[/img]
Indonesia Regional MO OSP SMA - geometry, 2007.1
Let $ABCD$ be a quadrilateral with $AB = BC = CD = DA$.
(a) Prove that point A must be outside of triangle $BCD$.
(b) Prove that each pair of opposite sides on $ABCD$ is always parallel.
2022 Saudi Arabia BMO + EGMO TST, 2.2
Given is an acute triangle $ABC$ with $BC < CA < AB$. Points $K$ and $L$ lie on segments $AC$ and $AB$ and satisfy $AK = AL = BC$. Perpendicular bisectors of segments $CK$ and $BL$ intersect line $BC$ at points $P$ and $Q$, respectively. Segments $KP$ and $LQ$ intersect at $M$. Prove that $CK + KM = BL + LM$.
2018 Dutch Mathematical Olympiad, 4
In triangle $ABC, \angle A$ is smaller than $\angle C$. Point $D$ lies on the (extended) line $BC$ (with $B$ between $C$ and $D$) such that $|BD| = |AB|$. Point $E$ lies on the bisector of $\angle ABC$ such that $\angle BAE = \angle ACB$. Line segment $BE$ intersects line segment $AC$ in point $F$. Point $G$ lies on line segment $AD$ such that $EG$ and $BC$ are parallel. Prove that $|AG| =|BF|$.
[asy]
unitsize (1.5 cm);
real angleindegrees(pair A, pair B, pair C) {
real a, b, c;
a = abs(B - C);
b = abs(C - A);
c = abs(A - B);
return(aCos((a^2 + c^2 - b^2)/(2*a*c)));
};
pair A, B, C, D, E, F, G;
B = (0,0);
A = 2*dir(190);
D = 2*dir(310);
C = 1.5*dir(310 - 180);
E = extension(B, incenter(A,B,C), A, rotate(angleindegrees(A,C,B),A)*(B));
F = extension(B,E,A,C);
G = extension(E, E + D - B, A, D);
filldraw(anglemark(A,C,B,8),gray(0.8));
filldraw(anglemark(B,A,E,8),gray(0.8));
draw(C--A--B);
draw(E--A--D);
draw(interp(C,D,-0.1)--interp(C,D,1.1));
draw(interp(E,B,-0.2)--interp(E,B,1.2));
draw(E--G);
dot("$A$", A, SW);
dot("$B$", B, NE);
dot("$C$", C, NE);
dot("$D$", D, NE);
dot("$E$", E, N);
dot("$F$", F, N);
dot("$G$", G, SW);
[/asy]
2002 Croatia Team Selection Test, 2
A quadrilateral $ABCD$ is circumscribed about a circle. Lines $AC$ and $DC$ meet at point $E$ and lines $DA$ and $BC$ meet at $F$, where $B$ is between $A$ and $E$ and between $C$ and $F$. Let $I_1, I_2$ and $I_3$ be the incenters of triangles $AFB, BEC$ and $ABC$, respectively. The line $I_1I_3$ intersects $EA$ at $K$ and $ED$ at $L$, whereas the line $I_2I_3$ intersects $FC$ at $M$ and $FD$ at $N$. Prove that $EK = EL$ if and only if $FM = FN$
2020 Chile National Olympiad, 3
Given the isosceles triangle $ABC$ with $| AB | = | AC | = 10$ and $| BC | = 15$. Let points $P$ in $BC$ and $Q$ in $AC$ chosen such that $| AQ | = | QP | = | P C |$. Calculate the ratio of areas of the triangles $(PQA): (ABC)$.
2019 Girls in Mathematics Tournament, 5
Let $ABC$ be an isosceles triangle with $AB = AC$. Let $X$ and $K$ points over $AC$ and $AB$, respectively, such that $KX = CX$. Bisector of $\angle AKX$ intersects line $BC$ at $Z$. Show that $XZ$ passes through the midpoint of $BK$.