This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 230

1976 IMO Longlists, 15

Let $ABC$ and $A'B'C'$ be any two coplanar triangles. Let $L$ be a point such that $AL || BC, A'L || B'C'$ , and $M,N$ similarly defined. The line $BC$ meets $B'C'$ at $P$, and similarly defined are $Q$ and $R$. Prove that $PL, QM, RN$ are concurrent.

2007 Nicolae Coculescu, 4

Prove that $ p $ divides $ \varphi (1+a^p) , $ where $ a\ge 2 $ is a natural number, $ p $ is a prime, and $ \varphi $ is Euler's totient. [i]Cristinel Mortici[/i]

2011 AMC 10, 23

What is the hundreds digit of $2011^{2011}$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9 $

2005 Pan African, 2

Tags: euler , algorithm
Noah has to fit 8 species of animals into 4 cages of the Arc. He planes to put two species of animal in each cage. It turns out that, for each species of animal, there are at most 3 other species with which it cannot share a cage. Prove that there is a way to assign the animals to the cages so that each species shares a cage with a compatible species.

2005 China Team Selection Test, 2

In acute angled triangle $ABC$, $BC=a$,$CA=b$,$AB=c$, and $a>b>c$. $I,O,H$ are the incentre, circumcentre and orthocentre of $\triangle{ABC}$ respectively. Point $D \in BC$, $E \in CA$ and $AE=BD$, $CD+CE=AB$. Let the intersectionf of $BE$ and $AD$ be $K$. Prove that $KH \parallel IO$ and $KH = 2IO$.

2012 South africa National Olympiad, 5

Let $ABC$ be a triangle such that $AB\neq AC$. We denote its orthocentre by $H$, its circumcentre by $O$ and the midpoint of $BC$ by $D$. The extensions of $HD$ and $AO$ meet in $P$. Prove that triangles $AHP$ and $ABC$ have the same centroid.

1966 IMO Longlists, 15

Given four points $A,$ $B,$ $C,$ $D$ on a circle such that $AB$ is a diameter and $CD$ is not a diameter. Show that the line joining the point of intersection of the tangents to the circle at the points $C$ and $D$ with the point of intersection of the lines $AC$ and $BD$ is perpendicular to the line $AB.$

1970 IMO Longlists, 22

In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$

2007 India IMO Training Camp, 1

Show that in a non-equilateral triangle, the following statements are equivalent: $(a)$ The angles of the triangle are in arithmetic progression. $(b)$ The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.

2013 All-Russian Olympiad, 3

The incircle of triangle $ ABC $ has centre $I$ and touches the sides $ BC $, $ CA $, $ AB $ at points $ A_1 $, $ B_1 $, $ C_1 $, respectively. Let $ I_a $, $ I_b $, $ I_c $ be excentres of triangle $ ABC $, touching the sides $ BC $, $ CA $, $ AB $ respectively. The segments $ I_aB_1 $ and $ I_bA_1 $ intersect at $ C_2 $. Similarly, segments $ I_bC_1 $ and $ I_cB_1 $ intersect at $ A_2 $, and the segments $ I_cA_1 $ and $ I_aC_1 $ at $ B_2 $. Prove that $ I $ is the center of the circumcircle of the triangle $ A_2B_2C_2 $. [i]L. Emelyanov, A. Polyansky[/i]

2005 USA Team Selection Test, 3

We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2,...,n!$. Prove that the probability for this polynomial to be special is between $0.71$ and $0.75$, where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3),...$ there are infinitely many numbers relatively prime with $k$.

PEN E Problems, 11

In 1772 Euler discovered the curious fact that $n^2 +n+41$ is prime when $n$ is any of $0,1,2, \cdots, 39$. Show that there exist $40$ consecutive integer values of $n$ for which this polynomial is not prime.

2003 India IMO Training Camp, 4

Tags: euler , geometry
There are four lines in the plane, no three concurrent, no two parallel, and no three forming an equilateral triangle. If one of them is parallel to the Euler line of the triangle formed by the other three lines, prove that a similar statement holds for each of the other lines.

2010 International Zhautykov Olympiad, 3

Let $ABC$ arbitrary triangle ($AB \neq BC \neq AC \neq AB$) And O,I,H it's circum-center, incenter and ortocenter (point of intersection altitudes). Prove, that 1) $\angle OIH > 90^0$(2 points) 2)$\angle OIH >135^0$(7 points) balls for 1) and 2) not additive.

2007 Moldova Team Selection Test, 3

Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point. [i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$. [i]Floor van Lamoen[/i]

2007 China Team Selection Test, 3

Show that there exists a positive integer $ k$ such that $ k \cdot 2^{n} \plus{} 1$ is composite for all $ n \in \mathbb{N}_{0}$.

1990 IMO Longlists, 15

Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.

2008 APMO, 1

Let $ ABC$ be a triangle with $ \angle A < 60^\circ$. Let $ X$ and $ Y$ be the points on the sides $ AB$ and $ AC$, respectively, such that $ CA \plus{} AX \equal{} CB \plus{} BX$ and $ BA \plus{} AY \equal{} BC \plus{} CY$ . Let $ P$ be the point in the plane such that the lines $ PX$ and $ PY$ are perpendicular to $ AB$ and $ AC$, respectively. Prove that $ \angle BPC < 120^\circ$.

2004 Iran MO (3rd Round), 19

Find all integer solutions of $ p^3\equal{}p^2\plus{}q^2\plus{}r^2$ where $ p,q,r$ are primes.

2003 Canada National Olympiad, 2

Find the last three digits of the number $2003^{{2002}^{2001}}$.

2002 Bulgaria National Olympiad, 4

Let $I$ be the incenter of a non-equilateral triangle $ABC$ and $T_1$, $T_2$, and $T_3$ be the tangency points of the incircle with the sides $BC$, $CA$ and $AB$, respectively. Prove that the orthocenter of triangle $T_1T_2T_3$ lies on the line $OI$, where $O$ is the circumcenter of triangle $ABC$. [i]Proposed by Georgi Ganchev[/i]

1998 South africa National Olympiad, 2

Find the maximum value of \[ \sin{2\alpha} + \sin{2\beta} + \sin{2\gamma} \] where $\alpha,\beta$ and $\gamma$ are positive and $\alpha + \beta + \gamma = 180^{\circ}$.

PEN N Problems, 8

An integer sequence $\{a_{n}\}_{n \ge 1}$ is given such that \[2^{n}=\sum^{}_{d \vert n}a_{d}\] for all $n \in \mathbb{N}$. Show that $a_{n}$ is divisible by $n$ for all $n \in \mathbb{N}$.

2010 Postal Coaching, 2

Suppose $\triangle ABC$ has circumcircle $\Gamma$, circumcentre $O$ and orthocentre $H$. Parallel lines $\alpha, \beta, \gamma$ are drawn through the vertices $A, B, C$, respectively. Let $\alpha ', \beta ', \gamma '$ be the reflections of $\alpha, \beta, \gamma$ in the sides $BC, CA, AB$, respectively. $(a)$ Show that $\alpha ', \beta ', \gamma '$ are concurrent if and only if $\alpha, \beta, \gamma$ are parallel to the Euler line $OH$. $(b)$ Suppose that $\alpha ', \beta ' , \gamma '$ are concurrent at the point $P$ . Show that $\Gamma$ bisects $OP$ .

PEN A Problems, 10

Let $n$ be a positive integer with $n \ge 3$. Show that \[n^{n^{n^{n}}}-n^{n^{n}}\] is divisible by $1989$.