This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 100

2014 Belarus Team Selection Test, 1

Let $\Gamma_B$ and $\Gamma_C$ be excircles of an acute-angled triangle $ABC$ opposite to its vertices $B$ and $C$, respectively. Let $C_1$ and $L$ be the tangent points of $\Gamma_C$ and the side $AB$ and the line $BC$ respectively. Let $B_1$ and $M$ be the tangent points of $\Gamma_B$ and the side $AC$ and the line $BC$, respectively. Let $X$ be the point of intersection of the lines $LC_1$ and $MB_1$. Prove that $AX$ is equal to the inradius of the triangle $ABC$. (A. Voidelevich)

2021 Balkan MO Shortlist, G7

Let $ABC$ be an acute scalene triangle. Its $C$-excircle tangent to the segment $AB$ meets $AB$ at point $M$ and the extension of $BC$ beyond $B$ at point $N$. Analogously, its $B$-excircle tangent to the segment $AC$ meets $AC$ at point $P$ and the extension of $BC$ beyond $C$ at point $Q$. Denote by $A_1$ the intersection point of the lines $MN$ and $PQ$, and let $A_2$ be defined as the point, symmetric to $A$ with respect to $A_1$. Define the points $B_2$ and $C_2$, analogously. Prove that $\triangle ABC$ is similar to $\triangle A_2B_2C_2$.

2023 Bulgaria JBMO TST, 3

Let $ABC$ be a non-isosceles triangle with circumcircle $k$, incenter $I$ and $C$-excenter $I_C$. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of arc $\widehat{ACB}$ on $k$. Prove that $\angle IMI_C + \angle INI_C = 180^{\circ}$.

2019 Oral Moscow Geometry Olympiad, 6

In the acute triangle $ABC$, the point $I_c$ is the center of excircle on the side $AB$, $A_1$ and $B_1$ are the tangency points of the other two excircles with sides $BC$ and $CA$, respectively, $C'$ is the point on the circumcircle diametrically opposite to point $C$. Prove that the lines $I_cC'$ and $A_1B_1$ are perpendicular.

2024 Israel TST, P2

In triangle $ABC$ the incenter is $I$. The center of the excircle opposite $A$ is $I_A$, and it is tangent to $BC$ at $D$. The midpoint of arc $BAC$ is $N$, and $NI$ intersects $(ABC)$ again at $T$. The center of $(AID)$ is $K$. Prove that $TI_A\perp KI$.

2021 Adygea Teachers' Geometry Olympiad, 3

Tags: excircle , geometry
In a triangle, one excircle touches side $AB$ at point $C_1$ and the other touches side $BC$ at point $A_1$. Prove that on the straight line $A_1C_1$ the constructed excircles cut out equal segments.

Kvant 2020, M2621

Tags: excircle , geometry
Consider a triangle $ABC$ in which $AB<BC<CA$. The excircles touch the sides $BC, CA,$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. A circle is drawn through the points $A_1, B_1$ and $C_1$ which intersects the sides $BC, CA$ and $AB$ for the second time at the points $A_2, B_2$ and $C_2$ respectively. On which side of the triangle can lie the largest of the segments $A_1A_2, B_1B_2$ and $C_1C_2$? [i]Proposed by I. Weinstein[/i]

1997 Tournament Of Towns, (557) 2

Let $a$ and $b$ be two sides of a triangle. How should the third side $c$ be chosen so that the points of contact of the incircle and the excircle with side $c$ divide that side into three equal segments? (The excircle corresponding to the side $c$ is the circle which is tangent to the side $c$ and to the extensions of the sides $a$ and $b$.) (Folklore)

2000 Saint Petersburg Mathematical Olympiad, 10.6

One of the excircles of triangle $ABC$ is tangent to the side $AB$ and to the extensions of sides $CA$ and $CB$ at points $C_1$, $B_1$ and $A_1$ respectively. Another excircle is tangent to side $AB$ and to the extensions of sides $BA$ and $BC$ at points $B_2$, $C_2$ and $A_2$ respectively. Line $A_1B_1$ and $A_2B_2$ intersect at point $P$,. lines $A_1C_1$ and $A_2C_2$ intersect at point $Q$. Prove that the points $A$, $P$, $Q$ are collinear [I]Proposed by S. Berlov[/i]

2017 Adygea Teachers' Geometry Olympiad, 2

It turned out for some triangle with sides $a, b$ and $c$, that a circle of radius $r = \frac{a+b+c}{2}$ touches side $c$ and extensions of sides $a$ and $b$. Prove that a circle of radius $ \frac{a+c-b}{2}$ is tangent to $a$ and the extensions of $b$ and $c$.

2018 Germany Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2005 Sharygin Geometry Olympiad, 11.2

Convex quadrilateral $ABCD$ is given. Lines $BC$ and $AD$ intersect at point $O$, with $B$ lying on the segment $OC$, and $A$ on the segment $OD$. $I$ is the center of the circle inscribed in the $OAB$ triangle, $J$ is the center of the circle exscribed in the triangle $OCD$ touching the side of $CD$ and the extensions of the other two sides. The perpendicular from the midpoint of the segment $IJ$ on the lines $BC$ and $AD$ intersect the corresponding sides of the quadrilateral (not the extension) at points $X$ and $Y$. Prove that the segment $XY$ divides the perimeter of the quadrilateral$ABCD$ in half, and from all segments with this property and ends on $BC$ and $AD$, segment $XY$ has the smallest length.

2011 Sharygin Geometry Olympiad, 11

The excircle of right-angled triangle $ABC$ ($\angle B =90^o$) touches side $BC$ at point $A_1$ and touches line $AC$ in point $A_2$. Line $A_1A_2$ meets the incircle of $ABC$ for the first time at point $A'$, point $C'$ is defined similarly. Prove that $AC||A'C'$.

2022 Yasinsky Geometry Olympiad, 5

In an acute-angled triangle $ABC$, point $I$ is the incenter, $H$ is the orthocenter, $O$ is the center of the circumscribed circle, $T$ and $K$ are the touchpoints of the $A$-excircle and incircle with side $BC$ respectively. It turned out that the segment $TI$ is passing through the point $O$. Prove that $HK$ is the angle bisector of $\angle BHC$. (Matvii Kurskyi)

Cono Sur Shortlist - geometry, 2021.G4

Let $ABC$ be a triangle and $\Gamma$ the $A$- exscribed circle whose center is $J$ . Let $D$ and $E$ be the touchpoints of $\Gamma$ with the lines $AB$ and $AC$, respectively. Let $S$ be the area of the quadrilateral $ADJE$, Find the maximum value that $\frac{S}{AJ^2}$ has and when equality holds.

2010 Sharygin Geometry Olympiad, 5

The incircle of a right-angled triangle $ABC$ ($\angle ABC =90^o$) touches $AB, BC, AC$ in points $C_1, A_1, B_1$, respectively. One of the excircles touches the side $BC$ in point $A_2$. Point $A_0$ is the circumcenter or triangle $A_1A_2B_1$, point $C_0$ is defined similarly. Find angle $A_0BC_0$.

II Soros Olympiad 1995 - 96 (Russia), 11.9

Tags: excircle , geometry
In triangle $ABC$, the side $BC = a$ and the radius $r$ of the circle tangent to the side BC and the extensions of $AB$ and $AC$ ($A$-excircle) are known. It is also known that inside the triangle there is a point $M$ such that $$BC - AM = CA - BM = AB - CM$$ Find the radius of the circle inscribed in the triangle $BMC$.

2019 Yasinsky Geometry Olympiad, p6

The $ABC$ triangle is given, point $I_a$ is the center of an exscribed circle touching the side $BC$ , the point $M$ is the midpoint of the side $BC$, the point $W$ is the intersection point of the bisector of the angle $A$ of the triangle $ABC$ with the circumscribed circle around him. Prove that the area of the triangle $I_aBC$ is calculated by the formula $S_{ (I_aBC)} = MW \cdot p$, where $p$ is the semiperimeter of the triangle $ABC$. (Mykola Moroz)

2018 Azerbaijan IMO TST, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2018 India IMO Training Camp, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2010 Ukraine Team Selection Test, 2

Let $ABCD$ be a quadrilateral inscribled in a circle with the center $O, P$ be the point of intersection of the diagonals $AC$ and $BD$, $BC\nparallel AD$. Rays $AB$ and $DC$ intersect at the point $E$. The circle with center $I$ inscribed in the triangle $EBC$ touches $BC$ at point $T_1$. The $E$-excircle with center $J$ in the triangle $EAD$ touches the side $AD$ at the point T$_2$. Line $IT_1$ and $JT_2$ intersect at $Q$. Prove that the points $O, P$, and $Q$ lie on a straight line.

2016 Oral Moscow Geometry Olympiad, 4

Let $M$ and $N$ be the midpoints of the hypotenuse $AB$ and the leg $BC$ of a right triangles $ABC$ respectively. The excircle of the triangle $ACM$ touches the side $AM$ at point $Q$, and line $AC$ at point $P$. Prove that points $P, Q$ and $N$ lie on one straight line.

2020 Estonia Team Selection Test, 2

Let $M$ be the midpoint of side BC of an acute-angled triangle $ABC$. Let $D$ and $E$ be the center of the excircle of triangle $AMB$ tangent to side $AB$ and the center of the excircle of triangle $AMC$ tangent to side $AC$, respectively. The circumscribed circle of triangle $ABD$ intersects line$ BC$ for the second time at point $F$, and the circumcircle of triangle $ACE$ is at point $G$. Prove that $| BF | = | CG|$.

2021 Spain Mathematical Olympiad, 6

Let $ABC$ be a triangle with $AB \neq AC$, let $I$ be its incenter, $\gamma$ its inscribed circle and $D$ the midpoint of $BC$. The tangent to $\gamma$ from $D$ different to $BC$ touches $\gamma$ in $E$. Prove that $AE$ and $DI$ are parallel.

2010 IFYM, Sozopol, 5

Tags: excircle , geometry
We are given $\Delta ABC$, for which the excircle to side $BC$ is tangent to the continuations of $AB$ and $AC$ in points $E$ and $F$ respectively. Let $D$ be the reflection of $A$ in line $EF$. If it is known that $\angle BAC=2\angle BDC$, then determine $\angle BAC$.