Found problems: 1581
2007 Iran Team Selection Test, 3
Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence.
a) Prove that $B_{n}$ does not depend on location of $P$.
b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.
2004 Germany Team Selection Test, 1
Let $ABC$ be an acute triangle, and let $M$ and $N$ be two points on the line $AC$ such that the vectors $MN$ and $AC$ are identical. Let $X$ be the orthogonal projection of $M$ on $BC$, and let $Y$ be the orthogonal projection of $N$ on $AB$. Finally, let $H$ be the orthocenter of triangle $ABC$.
Show that the points $B$, $X$, $H$, $Y$ lie on one circle.
2010 Iran MO (3rd Round), 1
1. In a triangle $ABC$, $O$ is the circumcenter and $I$ is the incenter. $X$ is the reflection of $I$ to $O$. $A_1$ is foot of the perpendicular from $X$ to $BC$. $B_1$ and $C_1$ are defined similarly. prove that $AA_1$,$BB_1$ and $CC_1$ are concurrent.(12 points)
2020 Vietnam Team Selection Test, 6
In the scalene acute triangle $ABC$, $O$ is the circumcenter. $AD, BE, CF$ are three altitudes. And $H$ is the orthocenter. Let $G$ be the reflection point of $O$ through $BC$. Draw the diameter $EK$ in $\odot (GHE)$, and the diameter $FL$ in $\odot (GHF)$.
a) If $AK, AL$ and $DE, DF$ intersect at $U, V$ respectively, prove that $UV\parallel EF$.
b) Suppose $S$ is the intersection of the two tangents of the circumscribed circle of $\triangle ABC$ at $B$ and $C$. $T$ is the intersection of $DS$ and $HG$. And $M,N$ are the projection of $H$ on $TE,TF$ respectively. Prove that $M,N,E,F$ are concyclic.
2006 Romania Team Selection Test, 2
Let $A$ be point in the exterior of the circle $\mathcal C$. Two lines passing through $A$ intersect the circle $\mathcal C$ in points $B$ and $C$ (with $B$ between $A$ and $C$) respectively in $D$ and $E$ (with $D$ between $A$ and $E$). The parallel from $D$ to $BC$ intersects the second time the circle $\mathcal C$ in $F$. Let $G$ be the second point of intersection between the circle $\mathcal C$ and the line $AF$ and $M$ the point in which the lines $AB$ and $EG$ intersect. Prove that
\[ \frac 1{AM} = \frac 1{AB} + \frac 1{AC}. \]
2012 France Team Selection Test, 2
Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.
2014 Taiwan TST Round 2, 6
Let $P$ be a point inside triangle $ABC$, and suppose lines $AP$, $BP$, $CP$ meet the circumcircle again at $T$, $S$, $R$ (here $T \neq A$, $S \neq B$, $R \neq C$). Let $U$ be any point in the interior of $PT$. A line through $U$ parallel to $AB$ meets $CR$ at $W$, and the line through $U$ parallel to $AC$ meets $BS$ again at $V$. Finally, the line through $B$ parallel to $CP$ and the line through $C$ parallel to $BP$ intersect at point $Q$. Given that $RS$ and $VW$ are parallel, prove that $\angle CAP = \angle BAQ$.
1998 Irish Math Olympiad, 2
The distances from a point $ P$ inside an equilateral triangle to the vertices of the triangle are $ 3,4$, and $ 5$. Find the area of the triangle.
1998 Turkey Team Selection Test, 1
Squares $BAXX^{'}$ and $CAYY^{'}$ are drawn in the exterior of a triangle $ABC$ with $AB = AC$. Let $D$ be the midpoint of $BC$, and $E$ and $F$ be the feet of the perpendiculars from an arbitrary point $K$ on the segment $BC$ to $BY$ and $CX$, respectively.
$(a)$ Prove that $DE = DF$ .
$(b)$ Find the locus of the midpoint of $EF$ .
2013 Math Prize For Girls Problems, 7
In the figure below, $\triangle ABC$ is an equilateral triangle.
[asy]
import graph;
unitsize(60);
axes("$x$", "$y$", (0, 0), (1.5, 1.5), EndArrow);
real w = sqrt(3) - 1;
pair A = (1, 1);
pair B = (0, w);
pair C = (w, 0);
draw(A -- B -- C -- cycle);
dot(Label("$A(1, 1)$", A, NE), A);
dot(Label("$B$", B, W), B);
dot(Label("$C$", C, S), C);
[/asy]
Point $A$ has coordinates $(1, 1)$, point $B$ is on the positive $y$-axis, and point $C$ is on the positive $x$-axis. What is the area of $\triangle ABC$?
2013 India IMO Training Camp, 3
For a positive integer $n$, a cubic polynomial $p(x)$ is said to be [i]$n$-good[/i] if there exist $n$ distinct integers $a_1, a_2, \ldots, a_n$ such that all the roots of the polynomial $p(x) + a_i = 0$ are integers for $1 \le i \le n$. Given a positive integer $n$ prove that there exists an $n$-good cubic polynomial.
2012 India National Olympiad, 4
Let $ABC$ be a triangle. An interior point $P$ of $ABC$ is said to be [i]good [/i]if we can find exactly $27$ rays emanating from $P$ intersecting the sides of the triangle $ABC$ such that the triangle is divided by these rays into $27$ [i]smaller triangles of equal area.[/i] Determine the number of good points for a given triangle $ABC$.
2017 Sharygin Geometry Olympiad, P20
Given a right-angled triangle $ABC$ and two perpendicular lines $x$ and $y$ passing through the vertex $A$ of its right angle. For an arbitrary point $X$ on $x$ define $y_B$ and $y_C$ as the reflections of $y$ about $XB$ and $ XC $ respectively. Let $Y$ be the common point of $y_b$ and $y_c$. Find the locus of $Y$ (when $y_b$ and $y_c$ do not coincide).
2005 Morocco TST, 4
A convex quadrilateral $ABCD$ has an incircle. In each corner a circle is inscribed that also externally touches the two circles inscribed in the adjacent corners. Show that at least two circles have the same size.
2018 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a triangle with $AB > AC$. Point $P \in (AB)$ is such that $\angle ACP = \angle ABC$. Let $D$ be the reflection of $P$ into the line $AC$ and let $E$ be the point in which the circumcircle of $BCD$ meets again the line $AC$. Prove that $AE = AC$.
2019 All-Russian Olympiad, 4
Let $ABC$ be an acute-angled triangle with $AC<BC.$ A circle passes through $A$ and $B$ and crosses the segments $AC$ and $BC$ again at $A_1$ and $B_1$ respectively. The circumcircles of $A_1B_1C$ and $ABC$ meet each other at points $P$ and $C.$ The segments $AB_1$ and $A_1B$ intersect at $S.$ Let $Q$ and $R$ be the reflections of $S$ in the lines $CA$ and $CB$ respectively. Prove that the points $P,$ $Q,$ $R,$ and $C$ are concyclic.
1968 Spain Mathematical Olympiad, 8
We will assume that the sides of a square are reflective and we will designate them with the names of the four cardinal points. Marking a point on the side $N$ , determine in which direction a ray of light should exit (into the interior of the square) so that it returns to it after having undergone $n$ reflections on the side $E$ , another $n$ on the side $W$ , $m$ on the $S$ and $m - 1$ on the $N$, where $n$ and $m$ are known natural numbers. What happens if m and $n$ are not prime to each other? Calculate the length of the light ray considered as a function of $m$ and $n$, and of the length of the side of the square.
2004 District Olympiad, 3
On the tetrahedron $ ABCD $ make the notation $ M,N,P,Q, $ for the midpoints of $ AB,CD,AC, $ respectively, $ BD. $ Additionally, we know that $ MN $ is the common perpendicular of $ AB,CD, $ and $ PQ $ is the common perpendicular of $ AC,BD. $ Show that $ AB=CD, BC=DA, AC=BD. $
2011 Polish MO Finals, 2
The incircle of triangle $ABC$ is tangent to $BC,CA,AB$ at $D,E,F$ respectively. Consider the triangle formed by the line joining the midpoints of $AE,AF$, the line joining the midpoints of $BF,BD$, and the line joining the midpoints of $CD,CE$. Prove that the circumcenter of this triangle coincides with the circumcenter of triangle $ABC$.
2008 AMC 10, 21
Ten chairs are evenly spaced around a round table and numbered clockwise from $ 1$ through $ 10$. Five married couples are to sit in the chairs with men and women alternating, and no one is to sit either next to or directly across from his or her spouse. How many seating arrangements are possible?
$ \textbf{(A)}\ 240\qquad
\textbf{(B)}\ 360\qquad
\textbf{(C)}\ 480\qquad
\textbf{(D)}\ 540\qquad
\textbf{(E)}\ 720$
2003 IberoAmerican, 2
In a square $ABCD$, let $P$ and $Q$ be points on the sides $BC$ and $CD$ respectively, different from its endpoints, such that $BP=CQ$. Consider points $X$ and $Y$ such that $X\neq Y$, in the segments $AP$ and $AQ$ respectively. Show that, for every $X$ and $Y$ chosen, there exists a triangle whose sides have lengths $BX$, $XY$ and $DY$.
1976 Canada National Olympiad, 4
Let $ AB$ be a diameter of a circle, $ C$ be any fixed point between $ A$ and $ B$ on this diameter, and $ Q$ be a variable point on the circumference of the circle. Let $ P$ be the point on the line determined by $ Q$ and $ C$ for which $ \frac{AC}{CB}\equal{}\frac{QC}{CP}$. Describe, with proof, the locus of the point $ P$.
2007 Middle European Mathematical Olympiad, 3
A tetrahedron is called a [i]MEMO-tetrahedron[/i] if all six sidelengths are different positive integers where one of them is $ 2$ and one of them is $ 3$. Let $ l(T)$ be the sum of the sidelengths of the tetrahedron $ T$.
(a) Find all positive integers $ n$ so that there exists a MEMO-Tetrahedron $ T$ with $ l(T)\equal{}n$.
(b) How many pairwise non-congruent MEMO-tetrahedrons $ T$ satisfying $ l(T)\equal{}2007$ exist? Two tetrahedrons are said to be non-congruent if one cannot be obtained from the other by a composition of reflections in planes, translations and rotations. (It is not neccessary to prove that the tetrahedrons are not degenerate, i.e. that they have a positive volume).
2007 Italy TST, 3
Let $p \geq 5$ be a prime.
(a) Show that exists a prime $q \neq p$ such that $q| (p-1)^{p}+1$
(b) Factoring in prime numbers $(p-1)^{p}+1 = \prod_{i=1}^{n}p_{i}^{a_{i}}$ show that:
\[\sum_{i=1}^{n}p_{i}a_{i}\geq \frac{p^{2}}2 \]
2014 ELMO Shortlist, 1
Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear.
[i]Proposed by Sammy Luo[/i]