This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2013 Online Math Open Problems, 30

Pairwise distinct points $P_1,P_2,\ldots, P_{16}$ lie on the perimeter of a square with side length $4$ centered at $O$ such that $\lvert P_iP_{i+1} \rvert = 1$ for $i=1,2,\ldots, 16$. (We take $P_{17}$ to be the point $P_1$.) We construct points $Q_1,Q_2,\ldots,Q_{16}$ as follows: for each $i$, a fair coin is flipped. If it lands heads, we define $Q_i$ to be $P_i$; otherwise, we define $Q_i$ to be the reflection of $P_i$ over $O$. (So, it is possible for some of the $Q_i$ to coincide.) Let $D$ be the length of the vector $\overrightarrow{OQ_1} + \overrightarrow{OQ_2} + \cdots + \overrightarrow{OQ_{16}}$. Compute the expected value of $D^2$. [i]Ray Li[/i]

1971 IMO Longlists, 6

Let squares be constructed on the sides $BC,CA,AB$ of a triangle $ABC$, all to the outside of the triangle, and let $A_1,B_1, C_1$ be their centers. Starting from the triangle $A_1B_1C_1$ one analogously obtains a triangle $A_2B_2C_2$. If $S, S_1, S_2$ denote the areas of triangles$ ABC,A_1B_1C_1,A_2B_2C_2$, respectively, prove that $S = 8S_1 - 4S_2.$

1994 AIME Problems, 14

A beam of light strikes $\overline{BC}$ at point $C$ with angle of incidence $\alpha=19.94^\circ$ and reflects with an equal angle of reflection as shown. The light beam continues its path, reflecting off line segments $\overline{AB}$ and $\overline{BC}$ according to the rule: angle of incidence equals angle of reflection. Given that $\beta=\alpha/10=1.994^\circ$ and $AB=AC,$ determine the number of times the light beam will bounce off the two line segments. Include the first reflection at $C$ in your count. [asy] size(250);defaultpen(linewidth(0.7)); real alpha=24, beta=32; pair B=origin, C=(1,0), A=dir(beta), D=C+0.5*dir(alpha); pair EE=2*dir(180-alpha), E=intersectionpoint(C--EE, A--B); pair EEE=reflect(B,A)*EE, EEEE=reflect(C,B)*EEE, F=intersectionpoint(E--EEE, B--C), G=intersectionpoint(F--EEEE, A--B); draw((1.4,0)--B--1.4*dir(beta)); draw(D--C, linetype("4 4"),EndArrow(5)); draw(C--E, linetype("4 4"),EndArrow(5)); draw(E--F, linetype("4 4"),EndArrow(5)); draw(F--G, linetype("4 4"),EndArrow(5)); markscalefactor=0.01; draw(anglemark(C,B,A)); draw(anglemark((1.4,0), C,D)); label("$\beta$", 0.07*dir(beta/2), dir(beta/2), fontsize(10)); label("$\alpha$", C+0.07*dir(alpha/2), dir(alpha/2), fontsize(10)); label("$A$", A, dir(90)*dir(A)); label("$B$", B, dir(beta/2+180)); label("$C$", C, S);[/asy]

2014 France Team Selection Test, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

2012 South africa National Olympiad, 5

Let $ABC$ be a triangle such that $AB\neq AC$. We denote its orthocentre by $H$, its circumcentre by $O$ and the midpoint of $BC$ by $D$. The extensions of $HD$ and $AO$ meet in $P$. Prove that triangles $AHP$ and $ABC$ have the same centroid.

2023 Saint Petersburg Mathematical Olympiad, 6

Given is a triangle $ABC$. Let $X$ be the reflection of $B$ in $AC$ and $Y$ is the reflection of $C$ in $AB$. The tangent to $(XAY)$ at $A$ meets $XY$ and $BC$ at $E, F$. Show that $AE=AF$.

2009 Moldova Team Selection Test, 2

$ f(x)$ and $ g(x)$ are two polynomials with nonzero degrees and integer coefficients, such that $ g(x)$ is a divisor of $ f(x)$ and the polynomial $ f(x)\plus{}2009$ has $ 50$ integer roots. Prove that the degree of $ g(x)$ is at least $ 5$.

1985 Spain Mathematical Olympiad, 1

Let $f : P\to P$ be a bijective map from a plane $P$ to itself such that: (i) $f (r)$ is a line for every line $r$, (ii) $f (r) $ is parallel to $r$ for every line $r$. What possible transformations can $f$ be?

1974 USAMO, 5

Consider the two triangles $ ABC$ and $ PQR$ shown below. In triangle $ ABC, \angle ADB \equal{} \angle BDC \equal{} \angle CDA \equal{} 120^\circ$. Prove that $ x\equal{}u\plus{}v\plus{}w$. [asy]unitsize(7mm); defaultpen(linewidth(.7pt)+fontsize(10pt)); pair C=(0,0), B=4*dir(5); pair A=intersectionpoints(Circle(C,5), Circle(B,6))[0]; pair Oc=scale(sqrt(3)/3)*rotate(30)*(B-A)+A; pair Ob=scale(sqrt(3)/3)*rotate(30)*(A-C)+C; pair D=intersectionpoints(Circle(Ob,length(Ob-C)), Circle(Oc,length(Oc-B)))[1]; real s=length(A-D)+length(B-D)+length(C-D); pair P=(6,0), Q=P+(s,0), R=rotate(60)*(s,0)+P; pair M=intersectionpoints(Circle(P,length(B-C)), Circle(Q,length(A-C)))[0]; draw(A--B--C--A--D--B); draw(D--C); label("$B$",B,SE); label("$C$",C,SW); label("$A$",A,N); label("$D$",D,NE); label("$a$",midpoint(B--C),S); label("$b$",midpoint(A--C),WNW); label("$c$",midpoint(A--B),NE); label("$u$",midpoint(A--D),E); label("$v$",midpoint(B--D),N); label("$w$",midpoint(C--D),NNW); draw(P--Q--R--P--M--Q); draw(M--R); label("$P$",P,SW); label("$Q$",Q,SE); label("$R$",R,N); label("$M$",M,NW); label("$x$",midpoint(P--R),NW); label("$x$",midpoint(P--Q),S); label("$x$",midpoint(Q--R),NE); label("$c$",midpoint(R--M),ESE); label("$a$",midpoint(P--M),NW); label("$b$",midpoint(Q--M),NE);[/asy]

2011 IberoAmerican, 3

Let $ABC$ be a triangle and $X,Y,Z$ be the tangency points of its inscribed circle with the sides $BC, CA, AB$, respectively. Suppose that $C_1, C_2, C_3$ are circle with chords $YZ, ZX, XY$, respectively, such that $C_1$ and $C_2$ intersect on the line $CZ$ and that $C_1$ and $C_3$ intersect on the line $BY$. Suppose that $C_1$ intersects the chords $XY$ and $ZX$ at $J$ and $M$, respectively; that $C_2$ intersects the chords $YZ$ and $XY$ at $L$ and $I$, respectively; and that $C_3$ intersects the chords $YZ$ and $ZX$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.

2009 Romania Team Selection Test, 1

Given two (identical) polygonal domains in the Euclidean plane, it is not possible in general to superpose the two using only translations and rotations. Prove that this can however be achieved by splitting one of the domains into a finite number of polygonal subdomains which then fit together, via translations and rotations in the plane, to recover the other domain.

2019 CMIMC, 8

Consider the following three lines in the Cartesian plane: $$\begin{cases} \ell_1: & 2x - y = 7\\ \ell_2: & 5x + y = 42\\ \ell_3: & x + y = 14 \end{cases}$$ and let $f_i(P)$ correspond to the reflection of the point $P$ across $\ell_i$. Suppose $X$ and $Y$ are points on the $x$ and $y$ axes, respectively, such that $f_1(f_2(f_3(X)))= Y$. Let $t$ be the length of segment $XY$; what is the sum of all possible values of $t^2$?

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

2017 CMIMC Individual Finals, 3

The parabola $\mathcal P$ given by equation $y=x^2$ is rotated some acute angle $\theta$ clockwise about the origin such that it hits both the $x$ and $y$ axes at two distinct points. Suppose the length of the segment $\mathcal P$ cuts the $x$-axis is $1$. What is the length of the segment $\mathcal P$ cuts the $y$-axis?

2001 Czech-Polish-Slovak Match, 4

Distinct points $A$ and $B$ are given on the plane. Consider all triangles $ABC$ in this plane on whose sides $BC,CA$ points $D,E$ respectively can be taken so that (i) $\frac{BD}{BC}=\frac{CE}{CA}=\frac{1}{3}$; (ii) points $A,B,D,E$ lie on a circle in this order. Find the locus of the intersection points of lines $AD$ and $BE$.

2011 AIME Problems, 3

Let $L$ be the line with slope $\tfrac{5}{12}$ that contains the point $A=(24,-1)$, and let $M$ be the line perpendicular to line $L$ that contains the point $B=(5,6)$. The original coordinate axes are erased, and line $L$ is made the $x$-axis, and line $M$ the $y$-axis. In the new coordinate system, point $A$ is on the positive $x$-axis, and point $B$ is on the positive $y$-axis. The point $P$ with coordinates $(-14,27)$ in the original system has coordinates $(\alpha,\beta)$ in the new coordinate system. Find $\alpha+\beta$.

2007 Iran Team Selection Test, 3

Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence. a) Prove that $B_{n}$ does not depend on location of $P$. b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.

2014 NIMO Problems, 8

Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$. [i]Proposed by Aaron Lin[/i]

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.

2009 India IMO Training Camp, 1

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.

2010 Romanian Master of Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2008 Teodor Topan, 3

Consider the sequence $ a_n\equal{}\sqrt[3]{n^3\plus{}3n^2\plus{}2n\plus{}1}\plus{}a\sqrt[5]{n^5\plus{}5n^4\plus{}1}\plus{}\frac{ln(e^{n^2}\plus{}n\plus{}2)}{n\plus{}2}\plus{}b$. Find $ a,b \in \mathbb{R}$ such that $ \displaystyle\lim_{n\to\infty}a_n\equal{}5$.

2011 Turkey MO (2nd round), 5

Let $M$ and $N$ be two regular polygonic area.Define $K(M,N)$ as the midpoints of segments $[AB]$ such that $A$ belong to $M$ and $B$ belong to $N$. Find all situations of $M$ and $N$ such that $K(M,N)$ is a regualr polygonic area too.

2000 AMC 12/AHSME, 25

Eight congruent equilateral triangles, each of a different color, are used to construct a regular octahedron. How many distinguishable ways are there to construct the octahedron? (Two colored octahedrons are distinguishable if neither can be rotated to look just like the other.) [asy]import three; import math; size(180); defaultpen(linewidth(.8pt)); currentprojection=orthographic(2,0.2,1); triple A=(0,0,1); triple B=(sqrt(2)/2,sqrt(2)/2,0); triple C=(sqrt(2)/2,-sqrt(2)/2,0); triple D=(-sqrt(2)/2,-sqrt(2)/2,0); triple E=(-sqrt(2)/2,sqrt(2)/2,0); triple F=(0,0,-1); draw(A--B--E--cycle); draw(A--C--D--cycle); draw(F--C--B--cycle); draw(F--D--E--cycle,dotted+linewidth(0.7));[/asy]$ \textbf{(A)}\ 210 \qquad \textbf{(B)}\ 560 \qquad \textbf{(C)}\ 840 \qquad \textbf{(D)}\ 1260 \qquad \textbf{(E)}\ 1680$