Found problems: 1581
1986 IMO Longlists, 29
We define a binary operation $\star$ in the plane as follows: Given two points $A$ and $B$ in the plane, $C = A \star B$ is the third vertex of the equilateral triangle ABC oriented positively. What is the relative position of three points $I, M, O$ in the plane if $I \star (M \star O) = (O \star I)\star M$ holds?
1999 Romania Team Selection Test, 9
Let $O,A,B,C$ be variable points in the plane such that $OA=4$, $OB=2\sqrt3$ and $OC=\sqrt {22}$. Find the maximum value of the area $ABC$.
[i]Mihai Baluna[/i]
2007 USA Team Selection Test, 1
Circles $ \omega_1$ and $ \omega_2$ meet at $ P$ and $ Q$. Segments $ AC$ and $ BD$ are chords of $ \omega_1$ and $ \omega_2$ respectively, such that segment $ AB$ and ray $ CD$ meet at $ P$. Ray $ BD$ and segment $ AC$ meet at $ X$. Point $ Y$ lies on $ \omega_1$ such that $ PY \parallel BD$. Point $ Z$ lies on $ \omega_2$ such that $ PZ \parallel AC$. Prove that points $ Q,X,Y,Z$ are collinear.
2012 Iran Team Selection Test, 3
Suppose $ABCD$ is a parallelogram. Consider circles $w_1$ and $w_2$ such that $w_1$ is tangent to segments $AB$ and $AD$ and $w_2$ is tangent to segments $BC$ and $CD$. Suppose that there exists a circle which is tangent to lines $AD$ and $DC$ and externally tangent to $w_1$ and $w_2$. Prove that there exists a circle which is tangent to lines $AB$ and $BC$ and also externally tangent to circles $w_1$ and $w_2$.
[i]Proposed by Ali Khezeli[/i]
2002 India IMO Training Camp, 12
Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.
1999 Tuymaada Olympiad, 1
50 knights of King Arthur sat at the Round Table. A glass of white or red wine stood before each of them. It is known that at least one glass of red wine and at least one glass of white wine stood on the table. The king clapped his hands twice. After the first clap every knight with a glass of red wine before him took a glass from his left neighbour. After the second clap every knight with a glass of white wine (and possibly something more) before him gave this glass to the left neughbour of his left neighbour. Prove that some knight was left without wine.
[i]Proposed by A. Khrabrov, incorrect translation from Hungarian[/i]
2022 Azerbaijan JBMO TST, G3
In acute, scalene Triangle $ABC$, $H$ is orthocenter,$ BD$ and $CE$ are heights. $X,Y$ are reflection of $A$ from $D$,$E$ respectively such that the points$ X,Y$ are on segments $DC$ and $EB$. The intersection of circles $ HXY$ and $ADE$ is $F.$ ( $F \neq H$). Prove that$ AF$ intersects middle point of $BC$. ( $M$ in the diagram is Midpoint of $BC$)
2009 Ukraine National Mathematical Olympiad, 3
In triangle $ABC$ points $M, N$ are midpoints of $BC, CA$ respectively. Point $P$ is inside $ABC$ such that $\angle BAP = \angle PCA = \angle MAC .$ Prove that $\angle PNA = \angle AMB .$
2013 All-Russian Olympiad, 3
The incircle of triangle $ ABC $ has centre $I$ and touches the sides $ BC $, $ CA $, $ AB $ at points $ A_1 $, $ B_1 $, $ C_1 $, respectively. Let $ I_a $, $ I_b $, $ I_c $ be excentres of triangle $ ABC $, touching the sides $ BC $, $ CA $, $ AB $ respectively. The segments $ I_aB_1 $ and $ I_bA_1 $ intersect at $ C_2 $. Similarly, segments $ I_bC_1 $ and $ I_cB_1 $ intersect at $ A_2 $, and the segments $ I_cA_1 $ and $ I_aC_1 $ at $ B_2 $. Prove that $ I $ is the center of the circumcircle of the triangle $ A_2B_2C_2 $.
[i]L. Emelyanov, A. Polyansky[/i]
2008 Peru IMO TST, 1
Let $ ABC$ be a triangle and let $ I$ be the incenter. $ Ia$ $ Ib$ and $ Ic$ are the excenters opposite to points $ A$ $ B$ and $ C$ respectively. Let $ La$ be the line joining the orthocenters of triangles $ IBC$ and $ IaBC$. Define $ Lb$ and $ Lc$ in the same way.
Prove that $ La$ $ Lb$ and $ Lc$ are concurrent.
Daniel
2014 Singapore Senior Math Olympiad, 31
Find the number of ways that $7$ different guests can be seated at a round table with exactly 10 seats, without removing any empty seats. Here two seatings are considered to be the same if they can be obtained from each other by a rotation.
2011 AMC 12/AHSME, 12
A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square?
[asy]
unitsize(10mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2));
draw(A--B--C--D--E--F--G--H--cycle);
draw(A--D);
draw(B--G);
draw(C--F);
draw(E--H);
[/asy]
$ \textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$
1998 National Olympiad First Round, 20
How many real solutions does the equation $ x^{3} 3^{1/x^{3} } \plus{}\frac{1}{x^{3} } 3^{x^{3} } \equal{}6$ have?
$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ \text{Infinitely many} \qquad\textbf{(E)}\ \text{None}$
2009 China Western Mathematical Olympiad, 1
Let $M$ be the set of the real numbers except for finitely many elements. Prove that for every positive integer $n$ there exists a polynomial $f(x)$ with $\deg f = n$, such that all the coefficients and the $n$ real roots of $f$ are all in $M$.
2004 Putnam, B4
Let $n$ be a positive integer, $n \ge 2$, and put $\theta=\frac{2\pi}{n}$. Define points $P_k=(k,0)$ in the [i]xy[/i]-plane, for $k=1,2,\dots,n$. Let $R_k$ be the map that rotates the plane counterclockwise by the angle $\theta$ about the point $P_k$. Let $R$ denote the map obtained by applying in order, $R_1$, then $R_2$, ..., then $R_n$. For an arbitrary point $(x,y)$, find and simplify the coordinates of $R(x,y)$.
2006 Pre-Preparation Course Examination, 4
Show that $ \rho (f)$ changes continously over $ f$. It means for every bijection $ f: S^1\rightarrow S^1$ and $ \epsilon > 0$ there is $ \delta > 0$ such that if $ g: S^1\rightarrow S^1$ is a bijection such that $ \parallel{}f \minus{} g\parallel{} < \delta$ then $ |\rho(f) \minus{} \rho(g)| < \epsilon$.
Note that $ \rho(f)$ is the rotatation number of $ f$ and $ \parallel{}f \minus{} g\parallel{} \equal{} \sup\{|f(x) \minus{} g(x)| | x\in S^1\}$.
1968 Vietnam National Olympiad, 2
$L$ and $M$ are two parallel lines a distance $d$ apart. Given $r$ and $x$, construct a triangle $ABC$, with $A$ on $L$, and $B$ and $C$ on $M$, such that the inradius is $r$, and angle $A = x$. Calculate angles $B$ and $C$ in terms of $d$, $r$ and $x$. If the incircle touches the side $BC$ at $D$, find a relation between $BD$ and $DC$
1956 Putnam, A6
i) A transformation of the plane into itself preserves all rational distances. Prove that it preserves all distances.
ii) Show that the corresponding statement for the line is false.
2009 China Team Selection Test, 1
Let $ ABC$ be a triangle. Point $ D$ lies on its sideline $ BC$ such that $ \angle CAD \equal{} \angle CBA.$ Circle $ (O)$ passing through $ B,D$ intersects $ AB,AD$ at $ E,F$, respectively. $ BF$ meets $ DE$ at $ G$.Denote by$ M$ the midpoint of $ AG.$ Show that $ CM\perp AO.$
2011 IMAC Arhimede, 4
Inscribed circle of triangle $ABC$ touches sides $BC$, $CA$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. Let $AA_{1}$, $BB_{1}$ and $CC_{1}$ be the altitudes of the triangle $ABC$ and $M$, $N$ and $P$ be the incenters of triangles $AB_{1}C_{1}$, $BC_{1}A_{1}$ and $CA_{1}B_{1}$, respectively.
a) Prove that $M$, $N$ and $P$ are orthocentres of triangles $AYZ$, $BZX$ and $CXY$, respectively.
b) Prove that common external tangents of these incircles, different from triangle sides, are concurent at orthocentre of triangle $XYZ$.
2011 AMC 10, 22
Each vertex of convex pentagon $ABCDE$ is to be assigned a color. There are $6$ colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible?
$ \textbf{(A)}\ 2520\qquad\textbf{(B)}\ 2880\qquad\textbf{(C)}\ 3120\qquad\textbf{(D)}\ 3250\qquad\textbf{(E)}\ 3750 $
2009 Iran MO (3rd Round), 3
An arbitary triangle is partitioned to some triangles homothetic with itself. The ratio of homothety of the triangles can be positive or negative.
Prove that sum of all homothety ratios equals to $1$.
Time allowed for this problem was 45 minutes.
2008 USAMO, 2
Let $ ABC$ be an acute, scalene triangle, and let $ M$, $ N$, and $ P$ be the midpoints of $ \overline{BC}$, $ \overline{CA}$, and $ \overline{AB}$, respectively. Let the perpendicular bisectors of $ \overline{AB}$ and $ \overline{AC}$ intersect ray $ AM$ in points $ D$ and $ E$ respectively, and let lines $ BD$ and $ CE$ intersect in point $ F$, inside of triangle $ ABC$. Prove that points $ A$, $ N$, $ F$, and $ P$ all lie on one circle.
2004 Bulgaria Team Selection Test, 1
The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.
2013 Saint Petersburg Mathematical Olympiad, 6
Let $(I_b)$, $(I_c)$ are excircles of a triangle $ABC$. Given a circle $ \omega $ passes through $A$ and externally tangents to the circles $(I_b)$ and $(I_c)$ such that it intersects with $BC$ at points $M$, $N$.
Prove that $ \angle BAM=\angle CAN $.
A. Smirnov