This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

III Soros Olympiad 1996 - 97 (Russia), 11.2

It is known that the graph of the function $y = f(x)$ after a rotation of $45^o$ around a certain point turns into the graph of the function $y = x^3 + ax^2 + 19x + 97$. At what $a$ is this possible?

2002 AIME Problems, 13

In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2014 France Team Selection Test, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

1971 Polish MO Finals, 2

A pool table has the shape of a triangle whose angles are in a rational ratio. A ball positioned at an interior point of the table is hit by a stick. The ball reflects from the sides of the triangle according to the law of reflection. Prove that the ball will move only along a finite number of segments. (It is assumed that the ball does not reach the vertices of the triangle.)

2008 USA Team Selection Test, 1

There is a set of $ n$ coins with distinct integer weights $ w_1, w_2, \ldots , w_n$. It is known that if any coin with weight $ w_k$, where $ 1 \leq k \leq n$, is removed from the set, the remaining coins can be split into two groups of the same weight. (The number of coins in the two groups can be different.) Find all $ n$ for which such a set of coins exists.

2005 Putnam, A6

Let $n$ be given, $n\ge 4,$ and suppose that $P_1,P_2,\dots,P_n$ are $n$ randomly, independently and uniformly, chosen points on a circle. Consider the convex $n$-gon whose vertices are the $P_i.$ What is the probability that at least one of the vertex angles of this polygon is acute.?

1991 Baltic Way, 17

Let the coordinate planes have the reflection property. A ray falls onto one of them. How does the final direction of the ray after reflecting from all three coordinate planes depend on its initial direction?

2000 Spain Mathematical Olympiad, 3

Two circles $C_1$ and $C_2$ with the respective radii $r_1$ and $r_2$ intersect in $A$ and $B.$ A variable line $r$ through $B$ meets $C_1$ and $C_2$ again at $P_r$ and $Q_r$ respectively. Prove that there exists a point $M,$ depending only on $C_1$ and $C_2,$ such that the perpendicular bisector of each segment $P_rQ_r$ passes through $M.$

2010 Today's Calculation Of Integral, 668

Consider two curves $y=\sin x,\ y=\sin 2x$ in $0\leq x\leq 2\pi$. (1) Let $(\alpha ,\ \beta)\ (0<\alpha <\pi)$ be the intersection point of the curves. If $\sin x-\sin 2x$ has a local minimum at $x=x_1$ and a local maximum at $x=x_2$, then find the values of $\cos x_1,\ \cos x_1\cos x_2$. (2) Find the area enclosed by the curves, then find the volume of the part generated by a rotation of the part of $\alpha \leq x\leq \pi$ for the figure about the line $y=-1$. [i]2011 Kyorin University entrance exam/Medicine [/i]

2002 AIME Problems, 15

Circles $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ intersect at two points, one of which is $(9,6),$ and the product of the radii is $68.$ The x-axis and the line $y=mx$, where $m>0,$ are tangent to both circles. It is given that $m$ can be written in the form $a\sqrt{b}/c,$ where $a,$ $b,$ and $c$ are positive integers, $b$ is not divisible by the square of any prime, and $a$ and $c$ are relatively prime. Find $a+b+c.$

2003 Czech-Polish-Slovak Match, 2

In an acute-angled triangle $ABC$ the angle at $B$ is greater than $45^\circ$. Points $D,E, F$ are the feet of the altitudes from $A,B,C$ respectively, and $K$ is the point on segment $AF$ such that $\angle DKF = \angle KEF$. (a) Show that such a point $K$ always exists. (b) Prove that $KD^2 = FD^2 + AF \cdot BF$.

2014 Baltic Way, 11

Let $\Gamma$ be the circumcircle of an acute triangle $ABC.$ The perpendicular to $AB$ from $C$ meets $AB$ at $D$ and $\Gamma$ again at $E.$ The bisector of angle $C$ meets $AB$ at $F$ and $\Gamma$ again at $G.$ The line $GD$ meets $\Gamma$ again at $H$ and the line $HF$ meets $\Gamma$ again at $I.$ Prove that $AI = EB.$

2021 AMC 10 Spring, 9

The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^{\circ}$ around the point $(1,5)$ and then reflected about the line $y=-x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b-a$? $\textbf{(A) }1 \qquad \textbf{(B) }3 \qquad \textbf{(C) }5 \qquad \textbf{(D) }7 \qquad \textbf{(E) }9$

2011 APMO, 3

Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .

1987 IberoAmerican, 2

In a triangle $ABC$, $M$ and $N$ are the respective midpoints of the sides $AC$ and $AB$, and $P$ is the point of intersection of $BM$ and $CN$. Prove that, if it is possible to inscribe a circle in the quadrilateral $AMPN$, then the triangle $ABC$ is isosceles.

2008 Romania National Olympiad, 1

Let $ ABC$ be an acute angled triangle with $ \angle B > \angle C$. Let $ D$ be the foot of the altitude from $ A$ on $ BC$, and let $ E$ be the foot of the perpendicular from $ D$ on $ AC$. Let $ F$ be a point on the segment $ (DE)$. Show that the lines $ AF$ and $ BF$ are perpendicular if and only if $ EF\cdot DC \equal{} BD \cdot DE$.

2014 Mexico National Olympiad, 3

Let $\Gamma_1$ be a circle and $P$ a point outside of $\Gamma_1$. The tangents from $P$ to $\Gamma_1$ touch the circle at $A$ and $B$. Let $M$ be the midpoint of $PA$ and $\Gamma_2$ the circle through $P$, $A$ and $B$. Line $BM$ cuts $\Gamma_2$ at $C$, line $CA$ cuts $\Gamma_1$ at $D$, segment $DB$ cuts $\Gamma_2$ at $E$ and line $PE$ cuts $\Gamma_1$ at $F$, with $E$ in segment $PF$. Prove lines $AF$, $BP$, and $CE$ are concurrent.

2012 APMO, 4

Let $ ABC $ be an acute triangle. Denote by $ D $ the foot of the perpendicular line drawn from the point $ A $ to the side $ BC $, by $M$ the midpoint of $ BC $, and by $ H $ the orthocenter of $ ABC $. Let $ E $ be the point of intersection of the circumcircle $ \Gamma $ of the triangle $ ABC $ and the half line $ MH $, and $ F $ be the point of intersection (other than $E$) of the line $ ED $ and the circle $ \Gamma $. Prove that $ \tfrac{BF}{CF} = \tfrac{AB}{AC} $ must hold. (Here we denote $XY$ the length of the line segment $XY$.)

2014 Iran Team Selection Test, 6

$I$ is the incenter of triangle $ABC$. perpendicular from $I$ to $AI$ meet $AB$ and $AC$ at ${B}'$ and ${C}'$ respectively . Suppose that ${B}''$ and ${C}''$ are points on half-line $BC$ and $CB$ such that $B{B}''=BA$ and $C{C}''=CA$. Suppose that the second intersection of circumcircles of $A{B}'{B}''$ and $A{C}'{C}''$ is $T$. Prove that the circumcenter of $AIT$ is on the $BC$.

2019 Belarus Team Selection Test, 6.1

Two circles $\Omega$ and $\Gamma$ are internally tangent at the point $B$. The chord $AC$ of $\Gamma$ is tangent to $\Omega$ at the point $L$, and the segments $AB$ and $BC$ intersect $\Omega$ at the points $M$ and $N$. Let $M_1$ and $N_1$ be the reflections of $M$ and $N$ about the line $BL$; and let $M_2$ and $N_2$ be the reflections of $M$ and $N$ about the line $AC$. The lines $M_1M_2$ and $N_1N_2$ intersect at the point $K$. Prove that the lines $BK$ and $AC$ are perpendicular. [i](M. Karpuk)[/i]

2019 Czech-Polish-Slovak Junior Match, 5

Let $A_1A_2 ...A_{360}$ be a regular $360$-gon with centre $S$. For each of the triangles $A_1A_{50}A_{68}$ and $A_1A_{50}A_{69}$ determine, whether its images under some $120$ rotations with centre $S$ can have (as triangles) all the $360$ points $A_1, A_2, ..., A_{360}$ as vertices.

2007 Iran MO (3rd Round), 1

Consider two polygons $ P$ and $ Q$. We want to cut $ P$ into some smaller polygons and put them together in such a way to obtain $ Q$. We can translate the pieces but we can not rotate them or reflect them. We call $ P,Q$ equivalent if and only if we can obtain $ Q$ from $ P$(which is obviously an equivalence relation). [img]http://i3.tinypic.com/4lrb43k.png[/img] a) Let $ P,Q$ be two rectangles with the same area(their sides are not necessarily parallel). Prove that $ P$ and $ Q$ are equivalent. b) Prove that if two triangles are not translation of each other, they are not equivalent. c) Find a necessary and sufficient condition for polygons $ P,Q$ to be equivalent.

2005 Italy TST, 2

The circle $\Gamma$ and the line $\ell$ have no common points. Let $AB$ be the diameter of $\Gamma$ perpendicular to $\ell$, with $B$ closer to $\ell$ than $A$. An arbitrary point $C\not= A$, $B$ is chosen on $\Gamma$. The line $AC$ intersects $\ell$ at $D$. The line $DE$ is tangent to $\Gamma$ at $E$, with $B$ and $E$ on the same side of $AC$. Let $BE$ intersect $\ell$ at $F$, and let $AF$ intersect $\Gamma$ at $G\not= A$. Let $H$ be the reflection of $G$ in $AB$. Show that $F,C$, and $H$ are collinear.

2014 India IMO Training Camp, 3

In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.

2002 India IMO Training Camp, 13

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.