This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2009 Balkan MO Shortlist, G6

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

KoMaL A Problems 2022/2023, A. 844

The inscribed circle of triangle $ABC$ is tangent to sides $BC$, $AC$ and $AB$ at points $D$, $E$ and $F$, respectively. Let $E'$ be the reflection of point $E$ across line $DF$, and $F'$ be the reflection of point $F$ across line $DE$. Let line $EF$ intersect the circumcircle of triangle $AE'F'$ at points $X$ and $Y$. Prove that $DX=DY$. [i]Proposed by Márton Lovas, Budapest[/i]

2019 CMI B.Sc. Entrance Exam, 5

Three positive reals $x , y , z $ satisfy \\ $x^2 + y^2 = 3^2 \\ y^2 + yz + z^2 = 4^2 \\ x^2 + \sqrt{3}xz + z^2 = 5^2 .$ \\ Find the value of $2xy + xz + \sqrt{3}yz$

1994 China Team Selection Test, 3

Find the smallest $n \in \mathbb{N}$ such that if any 5 vertices of a regular $n$-gon are colored red, there exists a line of symmetry $l$ of the $n$-gon such that every red point is reflected across $l$ to a non-red point.

2016 Indonesia TST, 3

Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$

2013 Middle European Mathematical Olympiad, 6

Let $K$ be a point inside an acute triangle $ ABC $, such that $ BC $ is a common tangent of the circumcircles of $ AKB $ and $ AKC$. Let $ D $ be the intersection of the lines $ CK $ and $ AB $, and let $ E $ be the intersection of the lines $ BK $ and $ AC $ . Let $ F $ be the intersection of the line $BC$ and the perpendicular bisector of the segment $DE$. The circumcircle of $ABC$ and the circle $k$ with centre $ F$ and radius $FD$ intersect at points $P$ and $Q$. Prove that the segment $PQ$ is a diameter of $k$.

2002 Federal Math Competition of S&M, Problem 3

Let $ ABCD$ be a rhombus with $ \angle BAD \equal{} 60^{\circ}$. Points $ S$ and $ R$ are chosen inside the triangles $ ABD$ and $ DBC$, respectively, such that $ \angle SBR \equal{} \angle RDS \equal{} 60^{\circ}$. Prove that $ SR^2\geq AS\cdot CR$.

2011 Today's Calculation Of Integral, 755

Given mobile points $P(0,\ \sin \theta),\ Q(8\cos \theta,\ 0)\ \left(0\leq \theta \leq \frac{\pi}{2}\right)$ on the $x$-$y$ plane. Denote by $D$ the part in which line segment $PQ$ sweeps. Find the volume $V$ generated by a rotation of $D$ around the $x$-axis.

Oliforum Contest II 2009, 2

Let a convex quadrilateral $ ABCD$ fixed such that $ AB \equal{} BC$, $ \angle ABC \equal{} 80, \angle CDA \equal{} 50$. Define $ E$ the midpoint of $ AC$; show that $ \angle CDE \equal{} \angle BDA$ [i](Paolo Leonetti)[/i]

2006 Polish MO Finals, 2

Tetrahedron $ABCD$ in which $AB=CD$ is given. Sphere inscribed in it is tangent to faces $ABC$ and $ABD$ respectively in $K$ and $L$. Prove that if points $K$ and $L$ are centroids of faces $ABC$ and $ABD$ then tetrahedron $ABCD$ is regular.

2014 Brazil National Olympiad, 6

Let $ABC$ be a triangle with incenter $I$ and incircle $\omega$. Circle $\omega_A$ is externally tangent to $\omega$ and tangent to sides $AB$ and $AC$ at $A_1$ and $A_2$, respectively. Let $r_A$ be the line $A_1A_2$. Define $r_B$ and $r_C$ in a similar fashion. Lines $r_A$, $r_B$ and $r_C$ determine a triangle $XYZ$. Prove that the incenter of $XYZ$, the circumcenter of $XYZ$ and $I$ are collinear.

2010 Contests, 3

Let $ABC$ be a triangle,$O$ its circumcenter and $R$ the radius of its circumcircle.Denote by $O_{1}$ the symmetric of $O$ with respect to $BC$,$O_{2}$ the symmetric of $O$ with respect to $AC$ and by $O_{3}$ the symmetric of $O$ with respect to $AB$. (a)Prove that the circles $C_{1}(O_{1},R)$, $C_{2}(O_{2},R)$, $C_{3}(O_{3},R)$ have a common point. (b)Denote by $T$ this point.Let $l$ be an arbitary line passing through $T$ which intersects $C_{1}$ at $L$, $C_{2}$ at $M$ and $C_{3}$ at $K$.From $K,L,M$ drop perpendiculars to $AB,BC,AC$ respectively.Prove that these perpendiculars pass through a point.

2005 Lithuania Team Selection Test, 2

Let $ABCD$ be a convex quadrilateral, and write $\alpha=\angle DAB$; $\beta=\angle ADB$; $\gamma=\angle ACB$; $\delta= \angle DBC$; and $\epsilon=\angle DBA$. Assuming that $\alpha<\pi/2$, $\beta+\gamma=\pi /2$, and $\delta+2\epsilon=\pi$, prove that \[(DB+BC)^2=AD^2+AC^2\] [color=red][Moderator edit: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=30569 .][/color]

2007 Italy TST, 3

Let $p \geq 5$ be a prime. (a) Show that exists a prime $q \neq p$ such that $q| (p-1)^{p}+1$ (b) Factoring in prime numbers $(p-1)^{p}+1 = \prod_{i=1}^{n}p_{i}^{a_{i}}$ show that: \[\sum_{i=1}^{n}p_{i}a_{i}\geq \frac{p^{2}}2 \]

2014 PUMaC Geometry A, 4

Consider the cyclic quadrilateral with side lengths $1$, $4$, $8$, $7$ in that order. What is its circumdiameter? Let the answer be of the form $a\sqrt b+c$, for $b$ squarefree. Find $a+b+c$.

1998 Vietnam National Olympiad, 2

Let be given a tetrahedron whose circumcenter is $O$. Draw diameters $AA_{1},BB_{1},CC_{1},DD_{1}$ of the circumsphere of $ABCD$. Let $A_{0},B_{0},C_{0},D_{0}$ be the centroids of triangle $BCD,CDA,DAB,ABC$. Prove that $A_{0}A_{1},B_{0}B_{1},C_{0}C_{1},D_{0}D_{1}$ are concurrent at a point, say, $F$. Prove that the line through $F$ and a midpoint of a side of $ABCD$ is perpendicular to the opposite side.

2014 Dutch IMO TST, 4

Let $\triangle ABC$ be a triangle with $|AC|=2|AB|$ and let $O$ be its circumcenter. Let $D$ be the intersection of the bisector of $\angle A$ with $BC$. Let $E$ be the orthogonal projection of $O$ to $AD$ and let $F\ne D$ be the point on $AD$ satisfying $|CD|=|CF|$. Prove that $\angle EBF=\angle ECF$.

2003 Romania Team Selection Test, 2

Let $ABC$ be a triangle with $\angle BAC=60^\circ$. Consider a point $P$ inside the triangle having $PA=1$, $PB=2$ and $PC=3$. Find the maximum possible area of the triangle $ABC$.

2012 Math Prize for Girls Olympiad, 1

Let $A_1A_2 \dots A_n$ be a polygon (not necessarily regular) with $n$ sides. Suppose there is a translation that maps each point $A_i$ to a point $B_i$ in the same plane. For convenience, define $A_0 = A_n$ and $B_0 = B_n$. Prove that \[ \sum_{i=1}^{n} (A_{i-1} B_{i})^2 = \sum_{i=1}^{n} (B_{i-1} A_{i})^2 \, . \]

1999 Balkan MO, 1

Let $O$ be the circumcenter of the triangle $ABC$. The segment $XY$ is the diameter of the circumcircle perpendicular to $BC$ and it meets $BC$ at $M$. The point $X$ is closer to $M$ than $Y$ and $Z$ is the point on $MY$ such that $MZ = MX$. The point $W$ is the midpoint of $AZ$. a) Show that $W$ lies on the circle through the midpoints of the sides of $ABC$; b) Show that $MW$ is perpendicular to $AY$.

2011 District Round (Round II), 2

Let $ABC$ denote a triangle with area $S$. Let $U$ be any point inside the triangle whose vertices are the midpoints of the sides of triangle $ABC$. Let $A'$, $B'$, $C'$ denote the reflections of $A$, $B$, $C$, respectively, about the point $U$. Prove that hexagon $AC'BA'CB'$ has area $2S$.

2003 IMAR Test, 3

The exinscribed circle of a triangle $ABC$ corresponding to its vertex $A$ touches the sidelines $AB$ and $AC$ in the points $M$ and $P$, respectively, and touches its side $BC$ in the point $N$. Show that if the midpoint of the segment $MP$ lies on the circumcircle of triangle $ABC$, then the points $O$, $N$, $I$ are collinear, where $I$ is the incenter and $O$ is the circumcenter of triangle $ABC$.

2004 239 Open Mathematical Olympiad, 2

Do there exist such a triangle $T$, that for any coloring of a plane in two colors one may found a triangle $T'$, equal to $T$, such that all vertices of $T'$ have the same color. [b] proposed by S. Berlov[/b]

2011 AIME Problems, 12

Nine delegates, three each from three different countries, randomly select chairs at a round table that seats nine people. Let the probability that each delegate sits next to at least one delegate from another country be $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2011 China Team Selection Test, 1

In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.