This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2010 Serbia National Math Olympiad, 2

In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. [i]Proposed by Marko Djikic[/i]

2001 Tournament Of Towns, 3

Point $A$ lies inside an angle with vertex $M$. A ray issuing from point $A$ is reflected in one side of the angle at point $B$, then in the other side at point $C$ and then returns back to point $A$ (the ordinary rule of reflection holds). Prove that the center of the circle circumscribed about triangle $\triangle BCM$ lies on line $AM$.

2009 China Team Selection Test, 2

In acute triangle $ ABC,$ points $ P,Q$ lie on its sidelines $ AB,AC,$ respectively. The circumcircle of triangle $ ABC$ intersects of triangle $ APQ$ at $ X$ (different from $ A$). Let $ Y$ be the reflection of $ X$ in line $ PQ.$ Given $ PX>PB.$ Prove that $ S_{\bigtriangleup XPQ}>S_{\bigtriangleup YBC}.$ Where $ S_{\bigtriangleup XYZ}$ denotes the area of triangle $ XYZ.$

1992 China Team Selection Test, 2

A $(3n + 1) \times (3n + 1)$ table $(n \in \mathbb{N})$ is given. Prove that deleting any one of its squares yields a shape cuttable into pieces of the following form and its rotations: ''L" shape formed by cutting one square from a $2 \times 2$ squares.

2010 Contests, 2

In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. [i]Proposed by Marko Djikic[/i]

2008 Kyiv Mathematical Festival, 5

Some $ m$ squares on the chessboard are marked. If among four squares at the intersection of some two rows and two columns three squares are marked then it is allowed to mark the fourth square. Find the smallest $ m$ for which it is possible to mark all squares after several such operations.

2014 ELMO Shortlist, 9

Let $P$ be a point inside a triangle $ABC$ such that $\angle PAC= \angle PCB$. Let the projections of $P$ onto $BC$, $CA$, and $AB$ be $X,Y,Z$ respectively. Let $O$ be the circumcenter of $\triangle XYZ$, $H$ be the foot of the altitude from $B$ to $AC$, $N$ be the midpoint of $AC$, and $T$ be the point such that $TYPO$ is a parallelogram. Show that $\triangle THN$ is similar to $\triangle PBC$. [i]Proposed by Sammy Luo[/i]

2012 Belarus Team Selection Test, 3

Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points. [i]Proposed by Härmel Nestra, Estonia[/i]

1998 USAMTS Problems, 5

The figure on the right shows the ellipse $\frac{(x-19)^2}{19}+\frac{(x-98)^2}{98}=1998$. Let $R_1,R_2,R_3,$ and $R_4$ denote those areas within the ellipse that are in the first, second, third, and fourth quadrants, respectively. Determine the value of $R_1-R_2+R_3-R_4$. [asy] defaultpen(linewidth(0.7)); pair c=(19,98); real dist = 30; real a = sqrt(1998*19),b=sqrt(1998*98); xaxis("x",c.x-a-dist,c.x+a+3*dist,EndArrow); yaxis("y",c.y-b-dist*2,c.y+b+3*dist,EndArrow); draw(ellipse(c,a,b)); label("$R_1$",(100,200)); label("$R_2$",(-80,200)); label("$R_3$",(-60,-150)); label("$R_4$",(70,-150));[/asy]

2020 Cono Sur Olympiad, 4

Let $ABC$ be an acute scalene triangle. $D$ and $E$ are variable points in the half-lines $AB$ and $AC$ (with origin at $A$) such that the symmetric of $A$ over $DE$ lies on $BC$. Let $P$ be the intersection of the circles with diameter $AD$ and $AE$. Find the locus of $P$ when varying the line segment $DE$.

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.

2011 Romanian Masters In Mathematics, 3

A triangle $ABC$ is inscribed in a circle $\omega$. A variable line $\ell$ chosen parallel to $BC$ meets segments $AB$, $AC$ at points $D$, $E$ respectively, and meets $\omega$ at points $K$, $L$ (where $D$ lies between $K$ and $E$). Circle $\gamma_1$ is tangent to the segments $KD$ and $BD$ and also tangent to $\omega$, while circle $\gamma_2$ is tangent to the segments $LE$ and $CE$ and also tangent to $\omega$. Determine the locus, as $\ell$ varies, of the meeting point of the common inner tangents to $\gamma_1$ and $\gamma_2$. [i](Russia) Vasily Mokin and Fedor Ivlev[/i]

1995 Vietnam National Olympiad, 3

Given an integer $ n\ge 2$ and a reular 2n-gon. Color all verices of the 2n-gon with n colors such that: [b](i)[/b] Each vertice is colored by exactly one color. [b](ii)[/b] Two vertices don't have the same color. Two ways of coloring, satisfying the conditions above, are called equilavent if one obtained from the other by a rotation whose center is the center of polygon. Find the total number of mutually non-equivalent ways of coloring. [i]Alternative statement:[/i] In how many ways we can color vertices of an regular 2n-polygon using n different colors such that two adjent vertices are colored by different colors. Two colorings which can be received from each other by rotation are considered as the same.

2014 China Team Selection Test, 1

Let the circumcenter of triangle $ABC$ be $O$. $H_A$ is the projection of $A$ onto $BC$. The extension of $AO$ intersects the circumcircle of $BOC$ at $A'$. The projections of $A'$ onto $AB, AC$ are $D,E$, and $O_A$ is the circumcentre of triangle $DH_AE$. Define $H_B, O_B, H_C, O_C$ similarly. Prove: $H_AO_A, H_BO_B, H_CO_C$ are concurrent

2011 China Girls Math Olympiad, 2

The diagonals $AC,BD$ of the quadrilateral $ABCD$ intersect at $E$. Let $M,N$ be the midpoints of $AB,CD$ respectively. Let the perpendicular bisectors of the segments $AB,CD$ meet at $F$. Suppose that $EF$ meets $BC,AD$ at $P,Q$ respectively. If $MF\cdot CD=NF\cdot AB$ and $DQ\cdot BP=AQ\cdot CP$, prove that $PQ\perp BC$.

2011 Romania Team Selection Test, 2

In triangle $ABC$, the incircle touches sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. Let $X$ be the feet of the altitude of the vertex $D$ on side $EF$ of triangle $DEF$. Prove that $AX,BY$ and $CZ$ are concurrent on the Euler line of the triangle $DEF$.

2007 F = Ma, 32

A thin, uniform rod has mass $m$ and length $L$. Let the acceleration due to gravity be $g$. Let the rotational inertia of the rod about its center be $md^2$. The rod is suspended from a distance $kd$ from the center, and undergoes small oscillations with an angular frequency $\beta \sqrt{\frac{g}{d}}$. Find an expression for $\beta$ in terms of $k$. $ \textbf{(A)}\ 1+k^2$ $ \textbf{(B)}\ \sqrt{1+k^2}$ $ \textbf{(C)}\ \sqrt{\frac{k}{1+k}}$ $ \textbf{(D)}\ \sqrt{\frac{k^2}{1+k}}$ $ \textbf{(E)}\ \text{none of the above}$

2010 Today's Calculation Of Integral, 560

Let $ K$ be the figure bounded by the graph of function $ y \equal{} \frac {x}{\sqrt {1 \minus{} x^2}}$, $ x$ axis and the line $ x \equal{} \frac {1}{2}$. (1) Find the volume $ V_1$ of the solid generated by rotation of $ K$ around $ x$ axis. (2) Find the volume $ V_2$ of the solid generated by rotation of $ K$ around $ y$ axis. Please solve question (2) without using the shell method for Japanese High School Students those who don't learn it.

2013 ELMO Shortlist, 12

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$. [i]Proposed by David Stoner[/i]

2013 Harvard-MIT Mathematics Tournament, 9

I have $8$ unit cubes of different colors, which I want to glue together into a $2\times 2\times 2$ cube. How many distinct $2\times 2\times 2$ cubes can I make? Rotations of the same cube are not considered distinct, but reflections are.

2009 Macedonia National Olympiad, 2

Let $O$ be the centre of the incircle of $\triangle ABC$. Points $K,L$ are the intersection points of the circles circumscribed about triangles $BOC,AOC$ respectively with the bisectors of the angles at $A,B$ respectively $(K,L\not= O)$. Also $P$ is the midpoint of segment $KL$, $M$ is the reflection of $O$ with respect to $P$ and $N$ is the reflection of $O$ with respect to line $KL$. Prove that the points $K,L,M$ and $N$ lie on the same circle.

1994 Vietnam National Olympiad, 2

$ABC$ is a triangle. Reflect each vertex in the opposite side to get the triangle $A'B'C'$. Find a necessary and sufficient condition on $ABC$ for $A'B'C'$ to be equilateral.

2011 IMO Shortlist, 5

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. Let $D$ and $E$ be the second intersection points of $\omega$ with $AI$ and $BI$, respectively. The chord $DE$ meets $AC$ at a point $F$, and $BC$ at a point $G$. Let $P$ be the intersection point of the line through $F$ parallel to $AD$ and the line through $G$ parallel to $BE$. Suppose that the tangents to $\omega$ at $A$ and $B$ meet at a point $K$. Prove that the three lines $AE,BD$ and $KP$ are either parallel or concurrent. [i]Proposed by Irena Majcen and Kris Stopar, Slovenia[/i]

2004 Tuymaada Olympiad, 1

50 knights of King Arthur sat at the Round Table. A glass of white or red wine stood before each of them. It is known that at least one glass of red wine and at least one glass of white wine stood on the table. The king clapped his hands twice. After the first clap every knight with a glass of red wine before him took a glass from his left neighbour. After the second clap every knight with a glass of white wine (and possibly something more) before him gave this glass to the left neughbour of his left neighbour. Prove that some knight was left without wine. [i]Proposed by A. Khrabrov, incorrect translation from Hungarian[/i]

2012 Romanian Master of Mathematics, 6

Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$. [i](Russia) Fedor Ivlev[/i]