Found problems: 1581
2007 Putnam, 5
Suppose that a finite group has exactly $ n$ elements of order $ p,$ where $ p$ is a prime. Prove that either $ n\equal{}0$ or $ p$ divides $ n\plus{}1.$
2008 Romania National Olympiad, 4
Let $ ABCD$ be a rectangle with center $ O$, $ AB\neq BC$. The perpendicular from $ O$ to $ BD$ cuts the lines $ AB$ and $ BC$ in $ E$ and $ F$ respectively. Let $ M,N$ be the midpoints of the segments $ CD,AD$ respectively. Prove that $ FM \perp EN$.
2018 CMIMC Geometry, 8
In quadrilateral $ABCD$, $AB=2$, $AD=3$, $BC=CD=\sqrt7$, and $\angle DAB=60^\circ$. Semicircles $\gamma_1$ and $\gamma_2$ are erected on the exterior of the quadrilateral with diameters $\overline{AB}$ and $\overline{AD}$; points $E\neq B$ and $F\neq D$ are selected on $\gamma_1$ and $\gamma_2$ respectively such that $\triangle CEF$ is equilateral. What is the area of $\triangle CEF$?
2007 International Zhautykov Olympiad, 2
Let $ABCD$ be a convex quadrilateral, with $\angle BAC=\angle DAC$ and $M$ a point inside such that $\angle MBA=\angle MCD$ and $\angle MBC=\angle MDC$. Show that the angle $\angle ADC$ is equal to $\angle BMC$ or $\angle AMB$.
2010 Greece Team Selection Test, 3
Let $ABC$ be a triangle,$O$ its circumcenter and $R$ the radius of its circumcircle.Denote by $O_{1}$ the symmetric of $O$ with respect to $BC$,$O_{2}$ the symmetric of $O$ with respect to $AC$ and by $O_{3}$ the symmetric of $O$ with respect to $AB$.
(a)Prove that the circles $C_{1}(O_{1},R)$, $C_{2}(O_{2},R)$, $C_{3}(O_{3},R)$ have a common point.
(b)Denote by $T$ this point.Let $l$ be an arbitary line passing through $T$ which intersects $C_{1}$ at $L$, $C_{2}$ at $M$ and $C_{3}$ at $K$.From $K,L,M$ drop perpendiculars to $AB,BC,AC$ respectively.Prove that these perpendiculars pass through a point.
1999 Brazil National Olympiad, 6
Given any triangle $ABC$, show how to construct $A'$ on the side $AB$, $B'$ on the side $BC$ and $C'$ on the side $CA$, such that $ABC$ and $A'B'C'$ are similar (with $\angle A = \angle A', \angle B = \angle B', \angle C = \angle C'$) and $A'B'C'$ has the least possible area.
2002 India IMO Training Camp, 1
Let $A,B$ and $C$ be three points on a line with $B$ between $A$ and $C$. Let $\Gamma_1,\Gamma_2, \Gamma_3$ be semicircles, all on the same side of $AC$ and with $AC,AB,BC$ as diameters, respectively. Let $l$ be the line perpendicular to $AC$ through $B$. Let $\Gamma$ be the circle which is tangent to the line $l$, tangent to $\Gamma_1$ internally, and tangent to $\Gamma_3$ externally. Let $D$ be the point of contact of $\Gamma$ and $\Gamma_3$. The diameter of $\Gamma$ through $D$ meets $l$ in $E$. Show that $AB=DE$.
2014 IPhOO, 3
Consider a charged capacitor made with two square plates of side length $L$, uniformly charged, and separated by a very small distance $d$. The EMF across the capacitor is $\xi$. One of the plates is now rotated by a very small angle $\theta$ to the original axis of the capacitor. Find an expression for the difference in charge between the two plates of the capacitor, in terms of (if necessary) $d$, $\theta$, $\xi$, and $L$.
Also, approximate your expression by transforming it to algebraic form: i.e. without any non-algebraic functions. For example, logarithms and trigonometric functions are considered non-algebraic. Assume $ d << L $ and $ \theta \approx 0 $.
$\emph{Hint}$: You may assume that $ \frac {\theta L}{d} $ is also very small.
[i]Problem proposed by Trung Phan[/i]
[hide="Clarification"]
There are two possible ways to rotate the capacitor. Both were equally scored but this is what was meant: [asy]size(6cm);
real h = 7;
real w = 2;
draw((-w,0)--(-w,h));
draw((0,0)--(0,h), dashed);
draw((0,0)--h*dir(64));
draw(arc((0,0),2,64,90));
label("$\theta$", 2*dir(77), dir(77));
[/asy]
[/hide]
2013 Vietnam National Olympiad, 3
Let $ABC$ be a triangle such that $ABC$ isn't a isosceles triangle. $(I)$ is incircle of triangle touches $BC,CA,AB$ at $D,E,F$ respectively. The line through $E$ perpendicular to $BI$ cuts $(I)$ again at $K$. The line through $F$ perpendicular to $CI$ cuts $(I)$ again at $L$.$J$ is midpoint of $KL$.
[b]a)[/b] Prove that $D,I,J$ collinear.
[b]b)[/b] $B,C$ are fixed points,$A$ is moved point such that $\frac{AB}{AC}=k$ with $k$ is constant.$IE,IF$ cut $(I)$ again at $M,N$ respectively.$MN$ cuts $IB,IC$ at $P,Q$ respectively. Prove that bisector perpendicular of $PQ$ through a fixed point.
1997 AIME Problems, 13
Let $ S$ be the set of points in the Cartesian plane that satisfy
\[ \Big|\big|{|x| \minus{} 2}\big| \minus{} 1\Big| \plus{} \Big|\big|{|y| \minus{} 2}\big| \minus{} 1\Big| \equal{} 1.
\]
If a model of $ S$ were built from wire of negligible thickness, then the total length of wire required would be $ a\sqrt {b},$ where $ a$ and $ b$ are positive integers and $ b$ is not divisible by the square of any prime number. Find $ a \plus{} b.$
2004 Tournament Of Towns, 4
Vanya has chosen two positive numbers, x and y. He wrote the numbers x+y, x-y, x/y, and xy, and has shown these numbers to Petya. However, he didn't say which of the numbers was obtained from which operation. Show that Petya can uniquely recover x and y.
1997 Putnam, 1
A rectangle, $HOMF$, has sides $HO=11$ and $OM=5$. A triangle $\Delta ABC$ has $H$ as orthocentre, $O$ as circumcentre, $M$ be the midpoint of $BC$, $F$ is the feet of altitude from $A$. What is the length of $BC$ ?
[asy]
unitsize(0.3 cm);
pair F, H, M, O;
F = (0,0);
H = (0,5);
O = (11,5);
M = (11,0);
draw(H--O--M--F--cycle);
label("$F$", F, SW);
label("$H$", H, NW);
label("$M$", M, SE);
label("$O$", O, NE);
[/asy]
2004 Bulgaria Team Selection Test, 2
Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.
2011 Costa Rica - Final Round, 6
Let $ABC$ be a triangle. The incircle of $ABC$ touches $BC,AC,AB$ at $D,E,F$, respectively. Each pair of the incircles of triangles $AEF, BDF,CED$ has two pair of common external tangents, one of them being one of the sides of $ABC$. Show that the other three tangents divide triangle $DEF$ into three triangles and three parallelograms.
2014 Tuymaada Olympiad, 3
The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear.
[i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]
2020 IMO Shortlist, G5
Let $ABCD$ be a cyclic quadrilateral. Points $K, L, M, N$ are chosen on $AB, BC, CD, DA$ such that $KLMN$ is a rhombus with $KL \parallel AC$ and $LM \parallel BD$. Let $\omega_A, \omega_B, \omega_C, \omega_D$ be the incircles of $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$.
Prove that the common internal tangents to $\omega_A$, and $\omega_C$ and the common internal tangents to $\omega_B$ and $\omega_D$ are concurrent.
2014 Indonesia MO, 3
Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.
2006 China Team Selection Test, 1
Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.
2004 Moldova Team Selection Test, 7
Let $ABC$ be a triangle, let $O$ be its circumcenter, and let $H$ be its orthocenter.
Let $P$ be a point on the segment $OH$.
Prove that
$6r\leq PA+PB+PC\leq 3R$,
where $r$ is the inradius and $R$ the circumradius of triangle $ABC$.
[b]Moderator edit:[/b] This is true only if the point $P$ lies inside the triangle $ABC$. (Of course, this is always fulfilled if triangle $ABC$ is acute-angled, since in this case the segment $OH$ completely lies inside the triangle $ABC$; but if triangle $ABC$ is obtuse-angled, then the condition about $P$ lying inside the triangle $ABC$ is really necessary.)
2012 ELMO Shortlist, 4
Circles $\Omega$ and $\omega$ are internally tangent at point $C$. Chord $AB$ of $\Omega$ is tangent to $\omega$ at $E$, where $E$ is the midpoint of $AB$. Another circle, $\omega_1$ is tangent to $\Omega, \omega,$ and $AB$ at $D,Z,$ and $F$ respectively. Rays $CD$ and $AB$ meet at $P$. If $M$ is the midpoint of major arc $AB$, show that $\tan \angle ZEP = \tfrac{PE}{CM}$.
[i]Ray Li.[/i]
2009 Moldova Team Selection Test, 2
$ f(x)$ and $ g(x)$ are two polynomials with nonzero degrees and integer coefficients, such that $ g(x)$ is a divisor of $ f(x)$ and the polynomial $ f(x)\plus{}2009$ has $ 50$ integer roots. Prove that the degree of $ g(x)$ is at least $ 5$.
2014 ELMO Shortlist, 1
Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear.
[i]Proposed by Sammy Luo[/i]
2013 AMC 10, 16
A triangle with vertices $(6,5)$, $(8,-3)$, and $(9,1)$ is reflected about the line $x=8$ to create a second triangle. What is the area of the union of the two triangles?
$\textbf{(A) }9\qquad
\textbf{(B) }\dfrac{28}{3}\qquad
\textbf{(C) }10\qquad
\textbf{(D) }\dfrac{31}{3}\qquad
\textbf{(E) }\dfrac{32}{3}\qquad$
2013 Moldova Team Selection Test, 3
Consider the triangle $\triangle ABC$ with $AB \not = AC$. Let point $O$ be the circumcenter of $\triangle ABC$. Let the angle bisector of $\angle BAC$ intersect $BC$ at point $D$. Let $E$ be the reflection of point $D$ across the midpoint of the segment $BC$. The lines perpendicular to $BC$ in points $D,E$ intersect the lines $AO,AD$ at the points $X,Y$ respectively. Prove that the quadrilateral $B,X,C,Y$ is cyclic.
Cono Sur Shortlist - geometry, 2020.G1.4
Let $ABC$ be an acute scalene triangle. $D$ and $E$ are variable points in the half-lines $AB$ and $AC$ (with origin at $A$) such that the symmetric of $A$ over $DE$ lies on $BC$. Let $P$ be the intersection of the circles with diameter $AD$ and $AE$. Find the locus of $P$ when varying the line segment $DE$.