Found problems: 25757
XMO (China) 2-15 - geometry, 13.3
Let O be the circumcenter of triangle ABC.
Let H be the orthocenter of triangle ABC.
the perpendicular bisector of AB meet AC,BC at D,E.
the circumcircle of triangle DEH meet AC,BC,OH again at F,G,L.
CH meet FG at T,and ABCT is concyclic.
Prove that LHBC is concyclic.
graph: https://cdn.luogu.com.cn/upload/image_hosting/w6z6mvm4.png
Ukrainian TYM Qualifying - geometry, 2017.4
Specify at least one right triangle $ABC$ with integer sides, inside which you can specify a point $M$ such that the lengths of the segments $MA, MB, MC$ are integers. Are there many such triangles, none of which are are similar?
2019 AMC 12/AHSME, 24
Let $\omega=-\tfrac{1}{2}+\tfrac{1}{2}i\sqrt3.$ Let $S$ denote all points in the complex plane of the form $a+b\omega+c\omega^2,$ where $0\leq a \leq 1,0\leq b\leq 1,$ and $0\leq c\leq 1.$ What is the area of $S$?
$\textbf{(A) } \frac{1}{2}\sqrt3 \qquad\textbf{(B) } \frac{3}{4}\sqrt3 \qquad\textbf{(C) } \frac{3}{2}\sqrt3\qquad\textbf{(D) } \frac{1}{2}\pi\sqrt3 \qquad\textbf{(E) } \pi$
2006 Tournament of Towns, 5
Consider a square painting of size $1 \times 1$. A rectangular sheet of paper of area $2$ is called its “envelope” if one can wrap the painting with it without cutting the paper. (For instance, a $2 \times 1$ rectangle and a square with side $\sqrt2$ are envelopes.)
a) Show that there exist other envelopes. (4)
b) Show that there exist infinitely many envelopes. (3)
1971 IMO Longlists, 38
Let $A,B,C$ be three points with integer coordinates in the plane and $K$ a circle with radius $R$ passing through $A,B,C$. Show that $AB\cdot BC\cdot CA\ge 2R$, and if the centre of $K$ is in the origin of the coordinates, show that $AB\cdot BC\cdot CA\ge 4R$.
2006 Romania Team Selection Test, 1
The circle of center $I$ is inscribed in the convex quadrilateral $ABCD$. Let $M$ and $N$ be points on the segments $AI$ and $CI$, respectively, such that $\angle MBN = \frac 12 \angle ABC$. Prove that $\angle MDN = \frac 12 \angle ADC$.
2009 Croatia Team Selection Test, 2
Every natural number is coloured in one of the $ k$ colors. Prove that there exist four distinct natural numbers $ a, b, c, d$, all coloured in the same colour, such that $ ad \equal{} bc$, $ \displaystyle \frac b a$ is power of 2 and $ \displaystyle \frac c a$ is power of 3.
2007 National Olympiad First Round, 31
A square-shaped field is divided into $n$ rectangular farms whose sides are parallel to the sides of the field. What is the greatest value of $n$, if the sum of the perimeters of the farms is equal to $100$ times of the perimeter of the field?
$
\textbf{(A)}\ 10000
\qquad\textbf{(B)}\ 20000
\qquad\textbf{(C)}\ 50000
\qquad\textbf{(D)}\ 100000
\qquad\textbf{(E)}\ 200000
$
2000 Junior Balkan Team Selection Tests - Romania, 4
Let be a triangle $ ABC, $ and three points $ A',B',C' $ on the segments $ BC,CA, $ respectively, $ AB, $ such that the lines $ AA',BB',CC' $ are concurent at $ M. $ Name $ a,b,c,x,y,z $ the areas of the triangles $ AB'M,BC'M,CA'M,AC'M,BA'M, $ respectively, $ CB'M. $ Show that:
[b]a)[/b] $ abc=xyz $
[b]b)[/b] $ ab+bc+ca=xy+yz+zx $
[i]Bogdan Enescu[/i] and [i]Marcel Chiriță[/i]
2014-2015 SDML (High School), 8
What is the maximum area of a triangle that can be inscribed in an ellipse with semi-axes $a$ and $b$?
$\text{(A) }ab\frac{3\sqrt{3}}{4}\qquad\text{(B) }ab\qquad\text{(C) }ab\sqrt{2}\qquad\text{(D) }\left(a+b\right)\frac{3\sqrt{3}}{4}\qquad\text{(E) }\left(a+b\right)\sqrt{2}$
2020 ABMC, Team
[u]Round 5[/u]
[b]5.1.[/b] Quadrilateral $ABCD$ is such that $\angle ABC = \angle ADC = 90^o$ , $\angle BAD = 150^o$ , $AD = 3$, and $AB = \sqrt3$. The area of $ABCD$ can be expressed as $p\sqrt{q}$ for positive integers $p, q$ where $q$ is not divisible by the square of any prime. Find $p + q$.
[b]5.2.[/b] Neetin wants to gamble, so his friend Akshay describes a game to him. The game will consist of three dice: a $100$-sided one with the numbers $1$ to $100$, a tetrahedral one with the numbers $1$ to $4$, and a normal $6$-sided die. If Neetin rolls numbers with a product that is divisible by $21$, he wins. Otherwise, he pays Akshay $100$ dollars. The number of dollars that Akshay must pay Neetin for a win in order to make this game fair is $a/b$ for relatively prime positive integers $a, b$. Find $a + b$. (Fair means the expected net gain is $0$. )
[b]5.3.[/b] What is the sum of the fourth powers of the roots of the polynomial $P(x) = x^2 + 2x + 3$?
[u]Round 6[/u]
[b]6.1.[/b] Consider the set $S = \{1, 2, 3, 4,..., 25\}$. How many ordered $n$-tuples $S_1 = (a_1, a_2, a_3,..., a_n)$ of pairwise distinct ai exist such that $a_i \in S$ and $i^2 | a_i$ for all $1 \le i \le n$?
[b]6.2.[/b] How many ways are there to place $2$ identical rooks and $ 1$ queen on a $ 4 \times 4$ chessboard such that no piece attacks another piece? (A queen can move diagonally, vertically or horizontally and a rook can move vertically or horizontally)
[b]6.3.[/b] Let $L$ be an ordered list $\ell_1$, $\ell_2$, $...$, $\ell_{36}$ of consecutive positive integers who all have the sum of their digits not divisible by $11$. It is given that $\ell_1$ is the least element of $L$. Find the least possible value of $\ell_1$.
[u]Round 7[/u]
[b]7.1.[/b] Spencer, Candice, and Heather love to play cards, but they especially love the highest cards in the deck - the face cards (jacks, queens, and kings). They also each have a unique favorite suit: Spencer’s favorite suit is spades, Candice’s favorite suit is clubs, and Heather’s favorite suit is hearts. A dealer pulls out the $9$ face cards from every suit except the diamonds and wants to deal them out to the $3$ friends. How many ways can he do this so that none of the $3$ friends will see a single card that is part of their favorite suit?
[b]7.2.[/b] Suppose a sequence of integers satisfies the recurrence $a_{n+3} = 7a_{n+2} - 14a_{n+1} + 8a_n$. If $a_0 = 4$, $a_1 = 9$, and $a_2 = 25$, find $a_{16}$. Your answer will be in the form $2^a + 2^b + c$, where $2^a < a_{16} < 2^{a+1}$ and $b$ is as large as possible. Find $a + b + c$.
[b]7.3.[/b] Parallel lines $\ell_1$ and $\ell_2$ are $1$ unit apart. Unit square $WXYZ$ lies in the same plane with vertex $W$ on $\ell_1$. Line $\ell_2$ intersects segments $YX$ and $YZ$ at points $U$ and $O$, respectively. Given $UO =\frac{9}{10}$, the inradius of $\vartriangle YOU$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$.
[u]Round 8[/u]
[b]8.[/b] Let $A$ be the number of contestants who participated in at least one of the three rounds of the 2020 ABMC April contest. Let $B$ be the number of times the letter b appears in the Accuracy Round. Let $M$ be the number of
people who submitted both the speed and accuracy rounds before 2:00 PM EST. Further, let $C$ be the number of
times the letter c appears in the Speed Round. Estimate
$$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766239p24226402]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1996 Tournament Of Towns, (505) 2
For what positive integers $n$ is it possible to tile an equilateral triangle of side $n$ with trapezoids each of which has sides $1, 1, 1, 2$?
(NB Vassiliev)
1987 AIME Problems, 6
Rectangle $ABCD$ is divided into four parts of equal area by five segments as shown in the figure, where $XY = YB + BC + CZ = ZW = WD + DA + AX$, and $PQ$ is parallel to $AB$. Find the length of $AB$ (in cm) if $BC = 19$ cm and $PQ = 87$ cm.
[asy]
size(250);
pair A=origin, B=(96,0), C=(96,22), D=(0,22), W=(16,22), X=(20,0), Y=(80,0), Z=(76,22), P=(24,11), Q=(72,11);
draw(P--X--A--D--W--P--Q--Y--B--C--Z--Q^^W--Z^^X--Y);
dot(A^^B^^C^^D^^P^^Q^^W^^X^^Y^^Z);
pair point=(48,11);
label("$A$", A, SW);
label("$B$", B, SE);
label("$C$", C, NE);
label("$D$", D, NW);
label("$P$", P, dir(point--P));
label("$Q$", Q, dir(point--Q));
label("$W$", W, N);
label("$X$", X, S);
label("$Y$", Y, S);
label("$Z$", Z, N);[/asy]
1973 Chisinau City MO, 68
Inside the triangle $ABC$, point $O$ was chosen so that the triangles $AOB, BOC, COA$ turned out to be similar. Prove that triangle $ABC$ is equilateral.
2024 Israel Olympic Revenge, P4
Let $ABC$ be an acute triangle. Let $D$ be a point inside side $BC$. Let $E$ be the foot from $D$ to $AC$, and let $F$ be a point on $AB$ so that $FE\perp AB$. It is given that the lines $AD, BE, CF$ concur. $M_A, M_B, M_C$ are the midpoints of sides $BC, AC, AB$ respectively, and $O$ is the circumcenter of $ABC$. Moreover, we define $P=EF\cap M_AM_B, S=DE\cap M_AM_C$. Prove that $O, P, S$ are collinear.
Brazil L2 Finals (OBM) - geometry, 2022.3
Let $ABC$ be a triangle with incenter $I$ and let $\Gamma$ be its circumcircle. Let $M$ be the midpoint of $BC$, $K$ the midpoint of the arc $BC$ which does not contain $A$, $L$ the midpoint of the arc $BC$ which contains $A$ and $J$ the reflection of $I$ by the line $KL$. The line $LJ$ intersects $\Gamma$ again at the point $T\neq L$. The line $TM$ intersects $\Gamma$ again at the point $S\neq T$. Prove that $S, I, M, K$ lie on the same circle.
1992 Tournament Of Towns, (325) 2
Consider a right triangle $ABC$, where $A$ is the right angle, and $AC > AB$. Points $E$ on $AC$ and $D$ on $BC$ are chosen so that$ AB = AE = BD$. Prove that the triangle $ADE$ is right if and only if the ratio $AB : AC : BC$ of sides of the triangle $ABC$ is $3 : 4 : 5$.
(A. Parovan)
2014 Sharygin Geometry Olympiad, 8
Given is a cyclic quadrilateral $ABCD$. The point $L_a$ lies in the interior of $BCD$ and is such that its distances to the sides of this triangle are proportional to the lengths of corresponding sides. The points $L_b, L_c$, and $L_d$ are defined analogously. Given that the quadrilateral $L_aL_bL_cL_d$ is cyclic, prove that the quadrilateral $ABCD$ has two parallel sides.
(N. Beluhov)
2013 Hanoi Open Mathematics Competitions, 6
Let $ABC$ be a triangle with area $1$ (cm$^2$). Points $D,E$ and $F$ lie on the sides $AB, BC$ and CA, respectively. Prove that $min\{$area of $\vartriangle ADF,$ area of $\vartriangle BED,$ area of $\vartriangle CEF\} \le \frac14$ (cm$^2$).
2014 Belarus Team Selection Test, 1
Let $\Gamma_B$ and $\Gamma_C$ be excircles of an acute-angled triangle $ABC$ opposite to its vertices $B$ and $C$, respectively. Let $C_1$ and $L$ be the tangent points of $\Gamma_C$ and the side $AB$ and the line $BC$ respectively. Let $B_1$ and $M$ be the tangent points of $\Gamma_B$ and the side $AC$ and the line $BC$, respectively. Let $X$ be the point of intersection of the lines $LC_1$ and $MB_1$. Prove that $AX$ is equal to the inradius of the triangle $ABC$.
(A. Voidelevich)
2020 Bulgaria EGMO TST, 1
Let $n$ and $t$ be positive integers. What is the number of ways to place $t$ dominoes $(1\times 2$ or $2\times 1$ rectangles) in a $2\times n$ table so that there is no $2\times 2$ square formed by $2$ dominoes and each $2\times 3$ rectangle either does not have a horizontal domino in the middle and last cell in the first row or does not have a horizontal domino in the first and middle cell in the second row (or both)?
1999 Slovenia National Olympiad, Problem 3
A semicircle with diameter $AB$ is given. Two non-intersecting circles $k_1$ and $k_2$ with different radii touch the diameter $AB$ and touch the semicircle internally at $C$ and $D$, respectively. An interior common tangent $t$ of $k_1$ and $k_2$ touches $k_1$ at $E$ and $k_2$ at $F$. Prove that the lines $CE$ and $DF$ intersect on the semicircle.
2025 Al-Khwarizmi IJMO, 7
Let $ABCD$ be a cyclic quadrilateral with circumcenter $O$, such that $CD$ is not a diameter of its circumcircle. The lines $AD$ and $BC$ intersect at point $P$, so that $A$ lies between $D$ and $P$, and $B$ lies between $C$ and $P$. Suppose triangle $PCD$ is acute and let $H$ be its orthocenter. The points $E$ and $F$ on the lines $BC$ and $AD$, respectively, are such that $BD \parallel HE$ and $AC\parallel HF$. The line through $E$, perpendicular to $BC$, intersects $AD$ at $L$, and the line through $F$, perpendicular to $AD$, intersects $BC$ at $K$. Prove that the points $K$, $L$, $O$ are collinear.
[i]Amir Parsa Hosseini Nayeri, Iran[/i]
1997 Finnish National High School Mathematics Competition, 2
Circles with radii $R$ and $r$ ($R > r$) are externally tangent. Another common tangent of the circles in drawn.
This tangent and the circles bound a region inside which a circle as large as possible is drawn.
What is the radius of this circle?
2005 AMC 12/AHSME, 7
Square $ EFGH$ is inside the square $ ABCD$ so that each side of $ EFGH$ can be extended to pass through a vertex of $ ABCD$. Square $ ABCD$ has side length $ \sqrt {50}$ and $ BE \equal{} 1$. What is the area of the inner square $ EFGH$?
[asy]unitsize(4cm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
pair D=(0,0), C=(1,0), B=(1,1), A=(0,1);
pair F=intersectionpoints(Circle(D,2/sqrt(5)),Circle(A,1))[0];
pair G=foot(A,D,F), H=foot(B,A,G), E=foot(C,B,H);
draw(A--B--C--D--cycle);
draw(D--F);
draw(C--E);
draw(B--H);
draw(A--G);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",E,NNW);
label("$F$",F,ENE);
label("$G$",G,SSE);
label("$H$",H,WSW);[/asy]$ \textbf{(A)}\ 25\qquad \textbf{(B)}\ 32\qquad \textbf{(C)}\ 36\qquad \textbf{(D)}\ 40\qquad \textbf{(E)}\ 42$