This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2003 IMAR Test, 1

Prove that the interior of a convex pentagon whose sides are all equal, is not covered by the open disks having the sides of the pentagon as diameter.

2000 Greece JBMO TST, 2

Let $ABCD$ be a convex quadrilateral with $AB=CD$. From a random point $P$ of it's diagonal $BD$, we draw a line parallel to $AB$ that intersects $AD$ at point $M$ and a line parallel to $CD$ that intersects $BC$ at point $N$. Prove that: a) The sum $PM+PN$ is constant, independent of the position of $P$ on the diagonal $BD$. b) $MN\le BD$. When the equality holds?

2003 All-Russian Olympiad Regional Round, 9.3

In an isosceles triangle $ABC$ ($AB = BC$), the midline parallel to side $BC$ intersects the incircle at a point $F$ that does not lie on the base $AC$. Prove that the tangent to the circle at point $F$ intersects the bisector of angle $C$ on side $AB$.

2019 AMC 8, 4

Quadrilateral $ABCD$ is a rhombus with perimeter $52$ meters. The length of diagonal $\overline{AC}$ is $24$ meters. What is the area in square meters of rhombus $ABCD$? [asy] unitsize(1cm); draw((0,1)--(2,2)--(4,1)--(2,0)--cycle); dot("$A$",(0,1),W); dot("$D$",(2,2),N); dot("$C$",(4,1),E); dot("$B$",(2,0),S); [/asy] $\textbf{(A) } 60 \qquad\textbf{(B) } 90 \qquad\textbf{(C) } 105 \qquad\textbf{(D) } 120 \qquad\textbf{(E) } 144$

Denmark (Mohr) - geometry, 2016.3

Prove that all quadrilaterals $ABCD$ where $\angle B = \angle D = 90^o$, $|AB| = |BC|$ and $|AD| + |DC| = 1$, have the same area. [img]https://1.bp.blogspot.com/-55lHuAKYEtI/XzRzDdRGDPI/AAAAAAAAMUk/n8lYt3fzFaAB410PQI4nMEz7cSSrfHEgQCLcBGAsYHQ/s0/2016%2Bmohr%2Bp3.png[/img]

2018 Romania National Olympiad, 1

Tags: geometry
Prove that if in a triangle the orthocenter, the centroid and the incenter are collinear, then the triangle is isosceles.

2019 Balkan MO Shortlist, G8

Given an acute triangle $ABC$, $(c)$ its circumcircle with center $O$ and $H$ the orthocenter of the triangle $ABC$. The line $AO$ intersects $(c)$ at the point $D$. Let $D_1, D_2$ and $H_2, H_3$ be the symmetrical points of the points $D$ and $H$ with respect to the lines $AB, AC$ respectively. Let $(c_1)$ be the circumcircle of the triangle $AD_1D_2$. Suppose that the line $AH$ intersects again $(c_1)$ at the point $U$, the line $H_2H_3$ intersects the segment $D_1D_2$ at the point $K_1$ and the line $DH_3$ intersects the segment $UD_2$ at the point $L_1$. Prove that one of the intersection points of the circumcircles of the triangles $D_1K_1H_2$ and $UDL_1$ lies on the line $K_1L_1$.

2006 France Team Selection Test, 1

Let $ABCD$ be a square and let $\Gamma$ be the circumcircle of $ABCD$. $M$ is a point of $\Gamma$ belonging to the arc $CD$ which doesn't contain $A$. $P$ and $R$ are respectively the intersection points of $(AM)$ with $[BD]$ and $[CD]$, $Q$ and $S$ are respectively the intersection points of $(BM)$ with $[AC]$ and $[DC]$. Prove that $(PS)$ and $(QR)$ are perpendicular.

2022 MOAA, 7

Tags: geometry
A point $P$ is chosen uniformly at random in the interior of triangle $ABC$ with side lengths $AB = 5$, $BC = 12$, $CA = 13$. The probability that a circle with radius $\frac13$ centered at $P$ does not intersect the perimeter of $ABC$ can be written as $\frac{m}{n}$ where $m, n$ are relatively prime positive integers. Find $m + n$.

2009 Indonesia TST, 3

Let $ ABC$ be an acute triangle with $ \angle BAC\equal{}60^{\circ}$. Let $ P$ be a point in triangle $ ABC$ with $ \angle APB\equal{}\angle BPC\equal{}\angle CPA\equal{}120^{\circ}$. The foots of perpendicular from $ P$ to $ BC,CA,AB$ are $ X,Y,Z$, respectively. Let $ M$ be the midpoint of $ YZ$. a) Prove that $ \angle YXZ\equal{}60^{\circ}$ b) Prove that $ X,P,M$ are collinear.

1990 Swedish Mathematical Competition, 4

$ABCD$ is a quadrilateral. The bisectors of $\angle A$ and $\angle B$ meet at $E$. The line through $E$ parallel to $CD$ meets $AD$ at $L$ and $BC$ at $M$. Show that $LM = AL + BM$.

2014 Tuymaada Olympiad, 6

Each of $n$ black squares and $n$ white squares can be obtained by a translation from each other. Every two squares of different colours have a common point. Prove that ther is a point belonging at least to $n$ squares. [i](V. Dolnikov)[/i]

2001 Federal Competition For Advanced Students, Part 2, 3

Let be given a semicircle with the diameter $AB$, and points $C,D$ on it such that $AC = CD$. The tangent at $C$ intersects the line $BD$ at $E$. The line $AE$ intersects the arc of the semicircle at $F$. Prove that $CF < FD$.

2018 China Team Selection Test, 1

Tags: geometry
Let $\omega_1,\omega_2$ be two non-intersecting circles, with circumcenters $O_1,O_2$ respectively, and radii $r_1,r_2$ respectively where $r_1 < r_2$. Let $AB,XY$ be the two internal common tangents of $\omega_1,\omega_2$, where $A,X$ lie on $\omega_1$, $B,Y$ lie on $\omega_2$. The circle with diameter $AB$ meets $\omega_1,\omega_2$ at $P$ and $Q$ respectively. If $$\angle AO_1P+\angle BO_2Q=180^{\circ},$$ find the value of $\frac{PX}{QY}$ (in terms of $r_1,r_2$).

III Soros Olympiad 1996 - 97 (Russia), 11.4

How many parts can space be divided into by : a) three half-plane? b) four half-planes?

2020 BMT Fall, 20

Non-degenerate quadrilateral $ABCD$ with $AB = AD$ and $BC = CD$ has integer side lengths, and $\angle ABC = \angle BCD = \angle CDA$. If $AB = 3$ and $B \ne D$, how many possible lengths are there for $BC$?

2013 National Olympiad First Round, 13

Let $D$ and $E$ be points on side $[BC]$ of a triangle $ABC$ with circumcenter $O$ such that $D$ is between $B$ and $E$, $|AD|=|DB|=6$, and $|AE|=|EC|=8$. If $I$ is the incenter of triangle $ADE$ and $|AI|=5$, then what is $|IO|$? $ \textbf{(A)}\ \dfrac {29}{5} \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ \dfrac {23}{5} \qquad\textbf{(D)}\ \dfrac {21}{5} \qquad\textbf{(E)}\ \text{None of above} $

I Soros Olympiad 1994-95 (Rus + Ukr), 9.6

In the triangle $ABC$, the orthocenter $H$ lies on the inscribed circle. Is this triangle necessarily isosceles?

2013 Sharygin Geometry Olympiad, 1

A circle $k$ passes through the vertices $B, C$ of a scalene triangle $ABC$. $k$ meets the extensions of $AB, AC$ beyond $B, C$ at $P, Q$ respectively. Let $A_1$ is the foot the altitude drop from $A$ to $BC$. Suppose $A_1P=A_1Q$. Prove that $\widehat{PA_1Q}=2\widehat{BAC}$.

2015 China Girls Math Olympiad, 3

In a $12\times 12$ grid, colour each unit square with either black or white, such that there is at least one black unit square in any $3\times 4$ and $4\times 3$ rectangle bounded by the grid lines. Determine, with proof, the minimum number of black unit squares.

2002 India IMO Training Camp, 12

Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.

2012 Today's Calculation Of Integral, 798

Denote by $C,\ l$ the graphs of the cubic function $C: y=x^3-3x^2+2x$, the line $l: y=ax$. (1) Find the range of $a$ such that $C$ and $l$ have intersection point other than the origin. (2) Denote $S(a)$ by the area bounded by $C$ and $l$. If $a$ move in the range found in (1), then find the value of $a$ for which $S(a)$ is minimized. 50 points

2022 Saudi Arabia BMO + EGMO TST, 1.2

Point $M$ on side $AB$ of quadrilateral $ABCD$ is such that quadrilaterals $AMCD$ and $BMDC$ are circumscribed around circles centered at $O_1$ and $O_2$ respectively. Line $O_1O_2$ cuts an isosceles triangle with vertex $M$ from angle $CMD$. prove that $ABCD$ is a cyclc quadrilateral.

2005 India IMO Training Camp, 1

Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point. [i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$. [i]Floor van Lamoen[/i]

2021 Junior Balkan Team Selection Tests - Romania, P5

Tags: geometry
Let $I$ be the incenter of triangle $ABC$. The circle of centre $A$ and radius $AI$ intersects the circumcircle of triangle $ABC$ in $M$ and $N$. Prove that the line $MN$ is tangent to the incircle of triangle $ABC$