Found problems: 25757
2024 Moldova EGMO TST, 9
Given a convex quadrilateral $ KLMN $, in which $ \angle NKL = {{90} ^ {\circ}} $. Let $ P $ be the midpoint of the segment $ LM $. It turns out that $ \angle KNL = \angle MKP $. Prove that $ \angle KNM = \angle LKP $.
2006 All-Russian Olympiad, 4
Given a triangle $ ABC$. The angle bisectors of the angles $ ABC$ and $ BCA$ intersect the sides $ CA$ and $ AB$ at the points $ B_1$ and $ C_1$, and intersect each other at the point $ I$. The line $ B_1C_1$ intersects the circumcircle of triangle $ ABC$ at the points $ M$ and $ N$. Prove that the circumradius of triangle $ MIN$ is twice as long as the circumradius of triangle $ ABC$.
2006 Australia National Olympiad, 4
There are $n$ points on a circle, such that each line segment connecting two points is either red or blue.
$P_iP_j$ is red if and only if $P_{i+1} P_{j+1}$ is blue, for all distinct $i, j$ in $\left\{1, 2, ..., n\right\}$.
(a) For which values of $n$ is this possible?
(b) Show that one can get from any point on the circle to any other point, by doing a maximum of 3 steps, where one step is moving from a point to another point through a red segment connecting these points.
2005 Oral Moscow Geometry Olympiad, 1
The hexagon has five $90^o$ angles and one $270^o$ angle (see picture). Use a straight-line ruler to divide it into two equal-sized polygons.
[img]https://cdn.artofproblemsolving.com/attachments/d/8/cdd4df68644bb8e04adbe1b265039b82a5382b.png[/img]
Indonesia MO Shortlist - geometry, g4
Given an acute triangle $ABC$ with $AB <AC$. Points $P$ and $Q$ lie on the angle bisector of $\angle BAC$ so that $BP$ and $CQ$ are perpendicular on that angle bisector. Suppose that point $E, F$ lie respectively at sides $AB$ and $AC$ respectively, in such a way that $AEPF$ is a kite. Prove that the lines $BC, PF$, and $QE$ intersect at one point.
2015 Sharygin Geometry Olympiad, 7
Point $M$ on side $AB$ of quadrilateral $ABCD$ is such that quadrilaterals $AMCD$ and $BMDC$ are circumscribed around circles centered at $O_1$ and $O_2$ respectively. Line $O_1O_2$ cuts an isosceles triangle with vertex M from angle $CMD$. Prove that $ABCD$ is a cyclic quadrilateral.
(M. Kungozhin)
2012 Greece Team Selection Test, 2
Given is an acute triangle $ABC$ $\left(AB<AC<BC\right)$,inscribed in circle $c(O,R)$.The perpendicular bisector of the angle bisector $AD$ $\left(D\in BC\right)$ intersects $c$ at $K,L$ ($K$ lies on the small arc $\overarc{AB}$).The circle $c_1(K,KA)$ intersects $c$ at $T$ and the circle $c_2(L,LA)$ intersects $c$ at $S$.Prove that $\angle{BAT}=\angle{CAS}$.
[hide=Diagram][asy]import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -6.94236331697463, xmax = 15.849400903703716, ymin = -5.002235438802758, ymax = 7.893104843949444; /* image dimensions */
pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqqqtt = rgb(0.,0.,0.2);
draw((1.8318261909633622,3.572783369254345)--(0.,0.)--(6.,0.)--cycle, aqaqaq);
draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-117.14497824050169,-101.88970202103212)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt);
draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-55.85706977865775,-40.60179355918817)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt);
/* draw figures */
draw((1.8318261909633622,3.572783369254345)--(0.,0.), uququq);
draw((0.,0.)--(6.,0.), uququq);
draw((6.,0.)--(1.8318261909633622,3.572783369254345), uququq);
draw(circle((3.,0.7178452373968209), 3.0846882800136055));
draw((2.5345020274407277,0.)--(1.8318261909633622,3.572783369254345));
draw(circle((-0.01850947366601585,1.3533783539547308), 2.889550258039566));
draw(circle((5.553011501106743,2.4491551634556963), 3.887127532933951));
draw((-0.01850947366601585,1.3533783539547308)--(5.553011501106743,2.4491551634556963), linetype("2 2"));
draw((1.8318261909633622,3.572783369254345)--(0.7798408954511686,-1.423695174396108));
draw((1.8318261909633622,3.572783369254345)--(5.22015910454883,-1.4236951743961088));
/* dots and labels */
dot((1.8318261909633622,3.572783369254345),linewidth(3.pt) + dotstyle);
label("$A$", (1.5831274347452782,3.951671933606579), NE * labelscalefactor);
dot((0.,0.),linewidth(3.pt) + dotstyle);
label("$B$", (-0.6,0.05), NE * labelscalefactor);
dot((6.,0.),linewidth(3.pt) + dotstyle);
label("$C$", (6.188606107156787,0.07450151636712989), NE * labelscalefactor);
dot((2.5345020274407277,0.),linewidth(3.pt) + dotstyle);
label("$D$", (2.3,-0.7), NE * labelscalefactor);
dot((-0.01850947366601585,1.3533783539547308),linewidth(3.pt) + dotstyle);
label("$K$", (-0.3447473583572136,1.6382221818835927), NE * labelscalefactor);
dot((5.553011501106743,2.4491551634556963),linewidth(3.pt) + dotstyle);
label("$L$", (5.631664500260511,2.580738747400365), NE * labelscalefactor);
dot((0.7798408954511686,-1.423695174396108),linewidth(3.pt) + dotstyle);
label("$T$", (0.5977692071595602,-1.960477431907719), NE * labelscalefactor);
dot((5.22015910454883,-1.4236951743961088),linewidth(3.pt) + dotstyle);
label("$S$", (5.160406217502124,-1.8747941077698307), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/hide]
2005 Junior Balkan Team Selection Tests - Romania, 1
Let $\mathcal{C}_1(O_1)$ and $\mathcal{C}_2(O_2)$ be two circles which intersect in the points $A$ and $B$. The tangent in $A$ at $\mathcal{C}_2$ intersects the circle $\mathcal{C}_1$ in $C$, and the tangent in $A$ at $\mathcal{C}_1$ intersects $\mathcal{C}_2$ in $D$. A ray starting from $A$ and lying inside the $\angle CAD$ intersects the circles $\mathcal{C}_1$, $\mathcal{C}_2$ in the points $M$ and $N$ respectively, and the circumcircle of $\triangle ACD$ in $P$.
Prove that $AM=NP$.
2017 IMO Shortlist, G8
There are $2017$ mutually external circles drawn on a blackboard, such that no two are tangent and no three share a common tangent. A tangent segment is a line segment that is a common tangent to two circles, starting at one tangent point and ending at the other one. Luciano is drawing tangent segments on the blackboard, one at a time, so that no tangent segment intersects any other circles or previously drawn tangent segments. Luciano keeps drawing tangent segments until no more can be drawn.
Find all possible numbers of tangent segments when Luciano stops drawing.
1986 IMO Longlists, 80
Let $ABCD$ be a tetrahedron and $O$ its incenter, and let the line $OD$ be perpendicular to $AD$. Find the angle between the planes $DOB$ and $DOC.$
2021 AMC 10 Spring, 21
A square piece of paper has side length $1$ and vertices $A,B,C,$ and $D$ in that order. As shown in the figure, the paper is folded so that vertex $C$ meets edge $\overline{AD}$ at point $C’$, and edge $\overline{BC}$ intersects edge $\overline{AB}$ at point $E$. Suppose that $C’D=\frac{1}{3}$. What is the perimeter of $\triangle AEC’$?
[asy]
//Diagram by Samrocksnature
pair A=(0,1);
pair CC=(0.666666666666,1);
pair D=(1,1);
pair F=(1,0.62);
pair C=(1,0);
pair B=(0,0);
pair G=(0,0.25);
pair H=(-0.13,0.41);
pair E=(0,0.5);
dot(A^^CC^^D^^C^^B^^E);
draw(E--A--D--F);
draw(G--B--C--F, dashed);
fill(E--CC--F--G--H--E--CC--cycle, gray);
draw(E--CC--F--G--H--E--CC);
label("A",A,NW);
label("B",B,SW);
label("C",C,SE);
label("D",D,NE);
label("E",E,NW);
label("C'",CC,N);
[/asy]
$\textbf{(A) }2 \qquad \textbf{(B) }1+\frac{2}{3}\sqrt{3} \qquad \textbf{(C) }\frac{13}{6} \qquad \textbf{(D) }1+\frac{3}{4}\sqrt{3} \qquad \textbf{(E) }\frac{7}{3}$
2023 Israel TST, P2
Let $SABCDE$ be a pyramid whose base $ABCDE$ is a regular pentagon and whose other faces are acute triangles. The altitudes from $S$ to the base sides dissect them into ten triangles, colored red and blue alternatingly. Prove that the sum of the squared areas of the red triangles is equal to the sum of the squared areas of the blue triangles.
2006 Cuba MO, 2
Let $U$ be the center of the circle inscribed in the triangle $ABC$, $O_1$, $O_2$ and $O_3$ the centers of the circles circumscribed by the triangles $BCU$, $CAU$ and $ABU$ respectively. Prove that the circles circumscribed around the triangles $ABC$ and $O_1O_2O_3$ have the same center.
2018 CMIMC Geometry, 10
Let $ABC$ be a triangle with circumradius $17$, inradius $4$, circumcircle $\Gamma$ and $A$-excircle $\Omega$. Suppose the reflection of $\Omega$ over line $BC$ is internally tangent to $\Gamma$. Compute the area of $\triangle ABC$.
2018 Sharygin Geometry Olympiad, 1
Let $M$ be the midpoint of $AB$ in a right angled triangle $ABC$ with $\angle C = 90^\circ$. A circle passing through $C$ and $M$ meets segments $BC, AC$ at $P, Q$ respectively. Let $c_1, c_2$ be the circles with centers $P, Q$ and radii $BP, AQ$ respectively. Prove that $c_1, c_2$ and the circumcircle of $ABC$ are concurrent.
2016 May Olympiad, 4
In a triangle $ABC$, let $D$ and $E$ be points of the sides $ BC$ and $AC$ respectively. Segments $AD$ and $BE$ intersect at $O$. Suppose that the line connecting midpoints of the triangle and parallel to $AB$, bisects the segment $DE$. Prove that the triangle $ABO$ and the quadrilateral $ODCE$ have equal areas.
1994 Turkey Team Selection Test, 1
Let $P,Q,R$ be points on the sides of $\triangle ABC$ such that $P \in [AB],Q\in[BC],R\in[CA]$ and
$\frac{|AP|}{|AB|} = \frac {|BQ|}{|BC|} =\frac{|CR|}{|CA|} =k < \frac 12$
If $G$ is the centroid of $\triangle ABC$, find the ratio $\frac{Area(\triangle PQG)}{Area(\triangle PQR)}$ .
Kyiv City MO 1984-93 - geometry, 1991.7.4
Given a circle, point $C$ on it and point $A$ outside the circle. The equilateral triangle $ACP$ is constructed on the segment $AC$. Point $C$ moves along the circle. What trajectory will the point $P$ describe?
2005 USAMTS Problems, 5
Lisa and Bart are playing a game. A round table has $n$ lights evenly spaced around its circumference. Some of the lights are on and some of them off; the initial configuration is random. Lisa wins if she can get all of the lights turned on; Bart wins if he can prevent this from happening.
On each turn, Lisa chooses the positions at which to flip the lights, but before the lights are flipped, Bart, knowing Lisa’s choices, can rotate the table to any position that he chooses (or he can leave the table as is). Then the lights in the positions that Lisa chose are flipped: those that are off are turned on and those that are on are turned off.
Here is an example turn for $n = 5$ (a white circle indicates a light that is on, and a black
circle indicates a light that is off):
[asy]
size(250); defaultpen(linewidth(1)); picture p = new picture;
real r = 0.2; pair s1=(0,-4), s2=(0,-8); int[][] filled = {{1,2,3},{1,2,5},{2,3,4,5}};
draw(p,circle((0,0),1));
for(int i = 0; i < 5; ++i) {
pair P = dir(90-72*i); filldraw(p,circle(P,r),white); label(p,string(i+1),P,2*P,fontsize(10));
}
add(p); add(shift(s1)*p); add(shift(s2)*p);
for(int j = 0; j < 3; ++j)
for(int i = 0; i < filled[j].length; ++i)
filldraw(circle(dir(90-72*(filled[j][i]-1))+j*s1,r));
label("$\parbox{15em}{Initial Position.}$", (-4.5,0));
label("$\parbox{15em}{Lisa says ``1,3,4.'' \\ Bart rotates the table one \\ position counterclockwise. }$", (-4.5,0)+s1);
label("$\parbox{15em}{Lights in positions 1,3,4 are \\ flipped.}$", (-4.5,0)+s2);[/asy]
Lisa can take as many turns as she needs to win, or she can give up if it becomes clear
to her that Bart can prevent her from winning.
(a) Show that if $n = 7$ and initially at least one light is on and at least one light is off,
then Bart can always prevent Lisa from winning.
(b) Show that if $n = 8$, then Lisa can always win in at most 8 turns.
1974 Vietnam National Olympiad, 3
Let $ABC$ be a triangle with $A = 90^o, AH$ the altitude, $P,Q$ the feet of the perpendiculars from $H$ to $AB,AC$ respectively. Let $M$ be a variable point on the line $PQ$. The line through $M$ perpendicular to $MH$ meets the lines $AB,AC$ at $R, S$ respectively.
i) Prove that circumcircle of $ARS$ always passes the fixed point $H$.
ii) Let $M_1$ be another position of $M$ with corresponding points $R_1, S_1$. Prove that the ratio $RR_1/SS_1$ is constant.
iii) The point $K$ is symmetric to $H$ with respect to $M$. The line through $K$ perpendicular to the line $PQ$ meets the line $RS$ at $D$. Prove that$ \angle BHR = \angle DHR, \angle DHS = \angle CHS$.
2010 Tournament Of Towns, 2
Karlson and Smidge divide a cake in a shape of a square in the following way. First, Karlson places a candle on the cake (chooses some interior point). Then Smidge makes a straight cut from the candle to the boundary in the direction of his choice. Then Karlson makes a straight cut from the candle to the boundary in the direction perpendicular to Smidge's cut. As a result, the cake is split into two pieces; Smidge gets the smaller one. Smidge wants to get a piece which is no less than a quarter of the cake. Can Karlson prevent Smidge from getting the piece of that size?
2017 Math Hour Olympiad, 8-10
[u]Round 1[/u]
[b]p1. [/b]The Queen of Bees invented a new language for her hive. The alphabet has only $6$ letters: A, C, E, N, R, T; however, the alphabetic order is different than in English. A word is any sequence of $6$ different letters. In the dictionary for this language, the word TRANCE immediately follows NECTAR. What is the last word in the dictionary?
[b]p2.[/b] Is it possible to solve the equation $\frac{1}{x}= \frac{1}{y} +\frac{1}{z}$ with $x,y,z$ integers (positive or negative) such that one of the numbers $x,y,z$ has one digit, another has two digits, and the remaining one has three digits?
[b]p3.[/b] The $10,000$ dots in a $100\times 100$ square grid are all colored blue. Rekha can paint some of them red, but there must always be a blue dot on the line segment between any two red dots. What is the largest number of dots she can color red? The picture shows a possible coloring for a $5\times 7$ grid.
[img]https://cdn.artofproblemsolving.com/attachments/0/6/795f5ab879938ed2a4c8844092b873fb8589f8.jpg[/img]
[b]p4.[/b] Six flies rest on a table. You have a swatter with a checkerboard pattern, much larger than the table. Show that there is always a way to position and orient the swatter to kill at least five of the flies. Each fly is much smaller than a swatter square and is killed if any portion of a black square hits any part of the fly.
[b]p5.[/b] Maryam writes all the numbers $1-81$ in the cells of a $9\times 9$ table. Tian calculates the product of the numbers in each of the nine rows, and Olga calculates the product of the numbers in every column. Could Tian's and Olga's lists of nine products be identical?
[u]Round 2[/u]
[b]p6.[/b] A set of points in the plane is epic if, for every way of coloring the points red or blue, it is possible to draw two lines such that each blue point is on a line, but none of the red points are. The figure shows a particular set of $4$ points and demonstrates that it is epic. What is the maximum possible size of an epic set?
[img]https://cdn.artofproblemsolving.com/attachments/e/f/44fd1679c520bdc55c78603190409222d0b721.jpg[/img]
[b]p7.[/b] Froggy Chess is a game played on a pond with lily pads. First Judit places a frog on a pad of her choice, then Magnus places a frog on a different pad of his choice. After that, they alternate turns, with Judit moving first. Each player, on his or her turn, selects either of the two frogs and another lily pad where that frog must jump. The jump must reduce the distance between the frogs (all distances between the lily pads are different), but both frogs cannot end up on the same lily pad. Whoever cannot make a move loses. The picture below shows the jumps permitted in a particular situation.
Who wins the game if there are $2017$ lily pads?
[img]https://cdn.artofproblemsolving.com/attachments/a/9/1a26e046a2a614a663f9d317363aac61654684.jpg[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Russian TST 2021, P2
Let $ABCD$ be a cyclic quadrilateral. Points $K, L, M, N$ are chosen on $AB, BC, CD, DA$ such that $KLMN$ is a rhombus with $KL \parallel AC$ and $LM \parallel BD$. Let $\omega_A, \omega_B, \omega_C, \omega_D$ be the incircles of $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$.
Prove that the common internal tangents to $\omega_A$, and $\omega_C$ and the common internal tangents to $\omega_B$ and $\omega_D$ are concurrent.
2012 BMT Spring, round 2
[b]p1.[/b] $4$ balls are distributed uniformly at random among $6$ bins. What is the expected number of empty bins?
[b]p2.[/b] Compute ${150 \choose 20 }$ (mod $221$).
[b]p3.[/b] On the right triangle $ABC$, with right angle at$ B$, the altitude $BD$ is drawn. $E$ is drawn on $BC$ such that AE bisects angle $BAC$ and F is drawn on $AC$ such that $BF$ bisects angle $CBD$. Let the intersection of $AE$ and $BF$ be $G$. Given that $AB = 15$,$ BC = 20$, $AC = 25$, find $\frac{BG}{GF}$ .
[b]p4.[/b] What is the largest integer $n$ so that $\frac{n^2-2012}{n+7}$ is also an integer?
[b]p5.[/b] What is the side length of the largest equilateral triangle that can be inscribed in a regular pentagon with side length $1$?
[b]p6.[/b] Inside a LilacBall, you can find one of $7$ different notes, each equally likely. Delcatty must collect all $7$ notes in order to restore harmony and save Kanto from eternal darkness. What is the expected number of LilacBalls she must open in order to do so?
PS. You had better use hide for answers.
2014 Tuymaada Olympiad, 2
A $k\times \ell$ 'parallelogram' is drawn on a paper with hexagonal cells (it consists of $k$ horizontal rows of $\ell$ cells each). In this parallelogram a set of non-intersecting sides of hexagons is chosen; it divides all the vertices into pairs.
Juniors) How many vertical sides can there be in this set?
Seniors) How many ways are there to do that?
[asy]
size(120);
defaultpen(linewidth(0.8));
path hex = dir(30)--dir(90)--dir(150)--dir(210)--dir(270)--dir(330)--cycle;
for(int i=0;i<=3;i=i+1)
{
for(int j=0;j<=2;j=j+1)
{
real shiftx=j*sqrt(3)/2+i*sqrt(3),shifty=j*3/2;
draw(shift(shiftx,shifty)*hex);
}
}
[/asy]
[i](T. Doslic)[/i]