Found problems: 25757
2019 IMO, 2
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.
Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.
[i]Proposed by Anton Trygub, Ukraine[/i]
1966 IMO Longlists, 41
Given a regular $n$-gon $A_{1}A_{2}...A_{n}$ (with $n\geq 3$) in a plane. How many triangles of the kind $A_{i}A_{j}A_{k}$ are obtuse ?
2007 German National Olympiad, 4
Find all triangles such that its angles form an arithmetic sequence and the corresponding sides form a geometric sequence.
1964 Polish MO Finals, 6
Given is a pyramid $SABCD$ whose base is a convex quadrilateral $ ABCD $ with perpendicular diagonals $ AC $ and $ BD $, and the orthogonal projection of vertex $S$ onto the base is the point $0$ of the intersection of the diagonals of the base. Prove that the orthogonal projections of point $O$ onto the lateral faces of the pyramid lie on the circle.
1987 Polish MO Finals, 4
Let $S$ be the set of all tetrahedra which satisfy:
(1) the base has area $1$,
(2) the total face area is $4$, and
(3) the angles between the base and the other three faces are all equal.
Find the element of $S$ which has the largest volume.
2010 Princeton University Math Competition, 2
On rectangular coordinates, point $A = (1,2)$, $B = (3,4)$. $P = (a, 0)$ is on $x$-axis. Given that $P$ is chosen such that $AP + PB$ is minimized, compute $60a$.
1998 Belarus Team Selection Test, 3
For any given triangle $A_0B_0C_0$ consider a sequence of triangles constructed as follows:
a new triangle $A_1B_1C_1$ (if any) has its sides (in cm) that equal to the angles of $A_0B_0C_0$ (in radians). Then for $\vartriangle A_1B_1C_1$ consider a new triangle $A_2B_2C_2$ (if any) constructed in the similar พay, i.e., $\vartriangle A_2B_2C_2$ has its sides (in cm) that equal to the angles of $A_1B_1C_1$ (in radians), and so on.
Determine for which initial triangles $A_0B_0C_0$ the sequence never terminates.
1988 IMO Longlists, 84
A point $ M$ is chosen on the side $ AC$ of the triangle $ ABC$ in such a way that the radii of the circles inscribed in the triangles $ ABM$ and $ BMC$ are equal. Prove that
\[ BM^{2} \equal{} X \cot \left( \frac {B}{2}\right)
\]
where X is the area of triangle $ ABC.$
1981 AMC 12/AHSME, 23
[asy]defaultpen(linewidth(.8pt));
pair B = origin;
pair A = dir(60);
pair C = dir(0);
pair circ = circumcenter(A,B,C);
pair P = intersectionpoint(circ--(circ + (-1,0)),A--B);
pair Q = intersectionpoint(circ--(circ + (1,0)),A--C);
label("$A$",A,N);
label("$B$",B,SW);
label("$C$",C,SE);
label("$P$",P,NW);
label("$Q$",Q,NE);
draw(A--B--C--cycle);
draw(circumcircle(A,B,C));
draw(P--Q);
draw(Circle((0.5,0.09),0.385));[/asy]
Equilateral $ \triangle ABC$ is inscribed in a circle. A second circle is tangent internally to the circumcircle at $ T$ and tangent to sides $ AB$ and $ AC$ at points $ P$ and $ Q$. If side $ BC$ has length $ 12$, then segment $ PQ$ has length
$ \textbf{(A)}\ 6\qquad
\textbf{(B)}\ 6\sqrt{3}\qquad
\textbf{(C)}\ 8\qquad
\textbf{(D)}\ 8\sqrt{3}\qquad
\textbf{(E)}\ 9$
2008 District Olympiad, 4
Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.
2020 Stanford Mathematics Tournament, 1
Pentagon $ABCDE$ has $AB = BC = CD = DE$, $\angle ABC = \angle BCD = 108^o$, and $\angle CDE = 168^o$. Find the measure of angle $\angle BEA$ in degrees.
2009 Hanoi Open Mathematics Competitions, 9
Give an acute-angled triangle $ABC$ with area $S$, let points $A',B',C'$ be located as follows: $A'$ is the point where altitude from $A$ on $BC$ meets the outwards facing semicirle drawn on $BX$ as diameter.Points $B',C'$ are located similarly. Evaluate the sum $T=($area $\vartriangle BCA')^2+($area $\vartriangle CAB')^2+($area $\vartriangle ABC')^2$.
2001 239 Open Mathematical Olympiad, 2
In a convex quadrangle $ ABCD $, the rays $ DA $ and $ CB $ intersect at point $ Q $, and the rays $ BA $ and $ CD $ at the point $ P $. It turned out that $ \angle AQB = \angle APD $. The bisectors of the angles $ \angle AQB $ and $ \angle APD $ intersect the sides quadrangle at points $ X $, $ Y $ and $ Z $, $ T $ respectively. Circumscribed circles of triangles $ ZQT $ and $ XPY $ intersect at $ K $ inside quadrangle. Prove that $ K $ lies on the diagonal $ AC $.
2021 Durer Math Competition Finals, 3
The figure shows a line intersecting a square lattice. The area of some arising quadrilaterals are also indicated. What is the area of the region with the question mark?
[img]https://cdn.artofproblemsolving.com/attachments/0/d/4d5741a63d052e3f6971f87e60ca7df7302fb0.png[/img]
2008 Mid-Michigan MO, 7-9
[b]p1.[/b] Jack made $3$ quarts of fruit drink from orange and apple juice. His drink contains $45\%$ of orange juice. Nick prefers more orange juice in the drink. How much orange juice should he add to the drink to obtain a drink composed of $60\%$ of orange juice?
[b]p2.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the big square $ABCD$ is $40$ cm.
[img]https://cdn.artofproblemsolving.com/attachments/8/c/d54925cba07f63ec8578048f46e1e730cb8df3.png[/img]
[b]p3.[/b] For one particular number $a > 0$ the function f satisfies the equality $f(x + a) =\frac{1 + f(x)}{1 - f(x)}$ for all $x$. Show that $f$ is a periodic function. (A function $f$ is periodic with the period $T$ if $f(x + T) = f(x)$ for any $x$.)
[b]p4.[/b] If $a, b, c, x, y, z$ are numbers so that $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}= 1$ and $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}= 0$. Show that $\frac{x^2}{a^2} +\frac{y^2}{b^2} +\frac{z^2}{c^2} = 1$
[b]p5.[/b] Is it possible that a four-digit number $AABB$ is a perfect square?
(Same letters denote the same digits).
[b]p6.[/b] A finite number of arcs of a circle are painted black (see figure). The total length of these arcs is less than $\frac15$ of the circumference. Show that it is possible to inscribe a square in the circle so that all vertices of the square are in the unpainted portion of the circle.
[img]https://cdn.artofproblemsolving.com/attachments/2/c/bdfa61917a47f3de5dd3684627792a9ebf05d5.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2009 Balkan MO, 2
Let $ MN$ be a line parallel to the side $ BC$ of a triangle $ ABC$, with $ M$ on the side $ AB$ and $ N$ on the side $ AC$. The lines $ BN$ and $ CM$ meet at point $ P$. The circumcircles of triangles $ BMP$ and $ CNP$ meet at two distinct points $ P$ and $ Q$. Prove that $ \angle BAQ = \angle CAP$.
[i]Liubomir Chiriac, Moldova[/i]
2024 Sharygin Geometry Olympiad, 7
Restore a bicentral quadrilateral if two opposite vertices and the incenter are given.
2009 Thailand Mathematical Olympiad, 6
Let $\vartriangle ABC$ be a triangle with $AB > AC$, its incircle is tangent to $BC$ at $D$. Let $DE$ be a diameter of the incircle, and let $F$ be the intersection between line $AE$ and side $BC$. Find the ratio between the areas of $\vartriangle DEF$ and $\vartriangle ABC$ in terms of the three side lengths of$\vartriangle ABC$.
2002 HKIMO Preliminary Selection Contest, 20
A rectangular piece of paper has integer side lengths. The paper is folded so that a pair of diagonally opposite vertices coincide, and it is found that the crease is of length 65. Find a possible value of the perimeter of the paper.
2020 JHMT, 6
Triangle $ABC$ has $\angle A = 60^o$, $\angle B = 45$, and $AC = 6$. Let $D$ be on $AB$ such that $AD = 3$. There is exactly one point $E$ on $BC$ such that $\overline{DE}$ divides $ABC$ into two cyclic polygons. Compute $DE^2$.
2015 Paraguay Mathematical Olympiad, 4
The sidelengths of a triangle are natural numbers multiples of $7$, smaller than $40$. How many triangles satisfy these conditions?
2024 ELMO Shortlist, G5
Let $ABC$ be a triangle with circumcenter $O$ and circumcircle $\omega$. Let $D$ be the foot of the altitude from $A$ to $\overline{BC}$. Let $P$ and $Q$ be points on the circumcircles of triangles $AOB$ and $AOC$, respectively, such that $A$, $P$, and $Q$ are collinear. Prove that if the circumcircle of triangle $OPQ$ is tangent to $\omega$ at $T$, then $\angle BTD=\angle CAP$.
[i]Tiger Zhang[/i]
2007 Iran MO (3rd Round), 3
Let $ I$ be incenter of triangle $ ABC$, $ M$ be midpoint of side $ BC$, and $ T$ be the intersection point of $ IM$ with incircle, in such a way that $ I$ is between $ M$ and $ T$. Prove that $ \angle BIM\minus{}\angle CIM\equal{}\frac{3}2(\angle B\minus{}\angle C)$, if and only if $ AT\perp BC$.
2019 India PRMO, 6
Let $ABC$ be a triangle such that $AB=AC$. Suppose the tangent to the circumcircle of ABC at B is perpendicular to AC. Find angle ABC measured in degrees
EMCC Speed Rounds, 2013
[i]20 problems for 20 minutes.[/i]
[b]p1.[/b] Determine how many digits the number $10^{10}$ has.
[b]p2.[/b] Let $ABC$ be a triangle with $\angle ABC = 60^o$ and $\angle BCA = 70^o$. Compute $\angle CAB$ in degrees.
[b]p3.[/b] Given that $x : y = 2012 : 2$ and $y : z = 1 : 2013$, compute $x : z$. Express your answer as a common fraction.
[b]p4.[/b] Determine the smallest perfect square greater than $2400$.
[b]p5.[/b] At $12:34$ and $12:43$, the time contains four consecutive digits. Find the next time after 12:43 that the time contains four consecutive digits on a 24-hour digital clock.
[b]p6.[/b] Given that $ \sqrt{3^a \cdot 9^a \cdot 3^a} = 81^2$, compute $a$.
[b]p7.[/b] Find the number of positive integers less than $8888$ that have a tens digit of $4$ and a units digit of $2$.
[b]p8.[/b] Find the sum of the distinct prime divisors of $1 + 2012 + 2013 + 2011 \cdot 2013$.
[b]p9.[/b] Albert wants to make $2\times 3$ wallet sized prints for his grandmother. Find the maximum possible number of prints Albert can make using one $4 \times 7$ sheet of paper.
[b]p10.[/b] Let $ABC$ be an equilateral triangle, and let $D$ be a point inside $ABC$. Let $E$ be a point such that $ADE$ is an equilateral triangle and suppose that segments $DE$ and $AB$ intersect at point $F$. Given that $\angle CAD = 15^o$, compute $\angle DFB$ in degrees.
[b]p11.[/b] A palindrome is a number that reads the same forwards and backwards; for example, $1221$ is a palindrome. An almost-palindrome is a number that is not a palindrome but whose first and last digits are equal; for example, $1231$ and $1311$ are an almost-palindromes, but $1221$ is not. Compute the number of $4$-digit almost-palindromes.
[b]p12.[/b] Determine the smallest positive integer $n$ such that the sum of the digits of $11^n$ is not $2^n$.
[b]p13.[/b] Determine the minimum number of breaks needed to divide an $8\times 4$ bar of chocolate into $1\times 1 $pieces. (When a bar is broken into pieces, it is permitted to rotate some of the pieces, stack some of the pieces, and break any set of pieces along a vertical plane simultaneously.)
[b]p14.[/b] A particle starts moving on the number line at a time $t = 0$. Its position on the number line, as a function of time, is $$x = (t-2012)^2 -2012(t-2012)-2013.$$ Find the number of positive integer values of $t$ at which time the particle lies in the negative half of the number line (strictly to the left of $0$).
[b]p15.[/b] Let $A$ be a vertex of a unit cube and let $B$,$C$, and $D$ be the vertices adjacent to A. The tetrahedron $ABCD$ is cut off the cube. Determine the surface area of the remaining solid.
[b]p16.[/b] In equilateral triangle $ABC$, points $P$ and $R$ lie on segment $AB$, points $I$ and $M$ lie on segment $BC$, and points $E$ and $S$ lie on segment $CA$ such that $PRIMES$ is a equiangular hexagon. Given that $AB = 11$, $PS = 2$, $RI = 3$, and $ME = 5$, compute the area of hexagon $PRIMES$.
[b]p17.[/b] Find the smallest odd positive integer with an odd number of positive integer factors, an odd number of distinct prime factors, and an odd number of perfect square factors.
[b]p18.[/b] Fresh Mann thinks that the expressions $2\sqrt{x^2 -4} $and $2(\sqrt{x^2} -\sqrt4)$ are equivalent to each other, but the two expressions are not equal to each other for most real numbers $x$. Find all real numbers $x$ such that $2\sqrt{x^2 -4} = 2(\sqrt{x^2} -\sqrt4)$.
[b]p19.[/b] Let $m$ be the positive integer such that a $3 \times 3$ chessboard can be tiled by at most $m$ pairwise incongruent rectangles with integer side lengths. If rotations and reflections of tilings are considered distinct, suppose that there are $n$ ways to tile the chessboard with $m$ pairwise incongruent rectangles with integer side lengths. Find the product $mn$.
[b]p20.[/b] Let $ABC$ be a triangle with $AB = 4$, $BC = 5$, and $CA = 6$. A triangle $XY Z$ is said to be friendly if it intersects triangle $ABC$ and it is a translation of triangle $ABC$. Let $S$ be the set of points in the plane that are inside some friendly triangle. Compute the ratio of the area of $S$ to the area of triangle $ABC$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].