This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2013 F = Ma, 10

Which of the following can be used to distinguish a solid ball from a hollow sphere of the same radius and mass? $\textbf{(A)}$ Measurements of the orbit of a test mass around the object. $\textbf{(B)}$ Measurements of the time it takes the object to roll down an inclined plane. $\textbf{(C)}$ Measurements of the tidal forces applied by the object to a liquid body. $\textbf{(D)}$ Measurements of the behavior of the object as it oats in water. $\textbf{(E)}$ Measurements of the force applied to the object by a uniform gravitational field.

2006 APMO, 4

Let $A,B$ be two distinct points on a given circle $O$ and let $P$ be the midpoint of the line segment AB. Let $O_1$ be the circle tangent to the line $AB$ at $P$ and tangent to the circle $O$. Let $l$ be the tangent line, different from the line $AB$, to $O_1$ passing through $A$. Let $C$ be the intersection point, different from $A$, of $l$ and $O$. Let $Q$ be the midpoint of the line segment $BC$ and $O_2$ be the circle tangent to the line $BC$ at $Q$ and tangent to the line segment $AC$. Prove that the circle $O_2$ is tangent to the circle $O$.

2014 PUMaC Geometry A, 8

$ABCD$ is a cyclic quadrilateral with circumcenter $O$ and circumradius $7$. $AB$ intersects $CD$ at $E$, $DA$ intersects $CB$ at $F$. $OE=13$, $OF=14$. Let $\cos\angle FOE=\dfrac pq$, with $p$, $q$ coprime. Find $p+q$.

2023 Irish Math Olympiad, P1

We are given a triangle $ABC$ such that $\angle BAC < 90^{\circ}$. The point $D$ is on the opposite side of the line $AB$ to $C$ such that $|AD| = |BD|$ and $\angle ADB = 90^{\circ}$. Similarly, the point $E$ is on the opposite side of $AC$ to $B$ such that $|AE| = |CE|$ and $\angle AEC = 90^{\circ}$. The point $X$ is such that $ADXE$ is a parallelogram. Prove that $|BX| = |CX|$.

2015 Iran MO (3rd round), 1

Let $ABCD$ be the trapezoid such that $AB\parallel CD$. Let $E$ be an arbitrary point on $AC$. point $F$ lies on $BD$ such that $BE\parallel CF$. Prove that circumcircles of $\triangle ABF,\triangle BED$ and the line $AC$ are concurrent.

2016 Iranian Geometry Olympiad, 1

Tags: geometry
Let the circles $\omega$ and $\omega^ \prime$ intersect in $A$ and $B$. Tangent to circle$\omega$ at $A$ intersects$\omega^ \prime$ in $C$ and tangent to circle $\omega^ \prime$ at $A$ intersects $\omega$ in $D$. Suppose that $CD$ intersects$\omega$ and $\omega^ \prime$ in $E$ and $F$, respectively (assume that $E$ is between $F$ and $C$). The perpendicular to $AC$ from $E$ intersects $\omega^ \prime$ in point $P$ and perpendicular to $AD$ from $F$ intersects$\omega$ in point $Q$ (The points $A, P$ and $Q$ lie on the same side of the line $CD$). Prove that the points $A, P$ and $Q$ are collinear. Proposed by Mahdi Etesami Fard

1984 USAMO, 3

Tags: geometry
$P, A, B, C,$ and $D$ are five distinct points in space such that $\angle APB = \angle BPC = \angle CPD = \angle DPA = \theta$, where $\theta$ is a given acute angle. Determine the greatest and least values of $\angle APC + \angle BPD$.

Mathley 2014-15, 4

Let $ABC$ be an acute triangle with $E, F$ being the reflections of $B,C$ about the line $AC, AB$ respectively. Point $D$ is the intersection of $BF$ and $CE$. If $K$ is the circumcircle of triangle $DEF$, prove that $AK$ is perpendicular to $BC$. Nguyen Minh Ha, College of Pedagogical University of Hanoi

2017 Princeton University Math Competition, A3

Tags: geometry
Triangle $ABC$ has incenter $I$. The line through $I$ perpendicular to $AI$ meets the circumcircle of $ABC$ at points $P$ and $Q$, where $P$ and $B$ are on the same side of $AI$. Let $X$ be the point such that $PX$ // $CI$ and $QX$ // $BI$. Show that $P B, QC$, and $IX$ intersect at a common point.

2015 Kosovo Team Selection Test, 5

Tags: geometry
In convex quadrilateral ABCD,diagonals AC and BD intersect at S and are perpendicular. a)Prove that midpoints M,N,P,Q of AD,AB,BC,CD form a rectangular b)If diagonals of MNPQ intersect O and AD=5,BC=10,AC=10,BD=11 find value of SO

2009 JBMO Shortlist, 3

Tags: geometry
Parallelogram ${ABCD}$with obtuse angle $\angle ABC$ is given. After rotation of the triangle ${ACD}$ around the vertex ${C}$, we get a triangle ${CD'A'}$, such that points $B,C$ and ${D'}$are collinear. Extensions of median of triangle ${CD'A'}$ that passes through ${D'}$intersects the straight line ${BD}$ at point ${P}$. Prove that ${PC}$is the bisector of the angle $\angle BP{D}'$.

Cono Sur Shortlist - geometry, 2018.G4

Let $ABC$ be an acute triangle with $AC > AB$. Let $\Gamma$ be the circle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smaller arc $BC$ of this circle. Let $I$ be the incenter of $ABC$ and let $E$ and $F$ be points on sides $AB$ and $AC$, respectively, such that $AE = AF$ and $I$ lies on the segment $EF$. Let $P$ be the second intersection point of the circumcircle of the triangle $AEF$ with $\Gamma$ with $P \ne A$. Let $G$ and $H$ be the intersection points of the lines $PE$ and $PF$ with $\Gamma$ different from $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines AB and $AC$, respectively. Show that the line $JK$ passes through the midpoint of $BC$.

Kyiv City MO Juniors Round2 2010+ geometry, 2019.7.3

In the quadrilateral $ABCD$ it is known that $\angle ABD= \angle DBC$ and $AD= CD$. Let $DH$ be the altitude of $\vartriangle ABD$. Prove that $| BC - BH | = HA$. (Hilko Danilo)

2011 Croatia Team Selection Test, 3

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2024 Mozambique National Olympiad, P3

Let $ACE$ be a triangle with $\angle ECA=60^{\circ}, \angle AEC=90^{\circ}$. Let $B$ and $D$ be points on the sides $AC$ and $CE$ respectively such that the $\triangle BCD$ is equilateral. Now suppose $BD \cap AE=F$. Find $\angle EAC+\angle EFD$.

1968 Spain Mathematical Olympiad, 6

Check and justify , if in every tetrahedron are concurrent: a) The perpendiculars to the faces at their circumcenters. b) The perpendiculars to the faces at their orthocenters. c) The perpendiculars to the faces at their incenters. If so, characterize with some simple geometric property the point in that attend If not, show an example that clearly shows the not concurrency.

2025 Sharygin Geometry Olympiad, 15

A point $C$ lies on the bisector of an acute angle with vertex $S$. Let $P$, $Q$ be the projections of $C$ to the sidelines of the angle. The circle centered at $C$ with radius $PQ$ meets the sidelines at points $A$ and $B$ such that $SA\ne SB$. Prove that the circle with center $A$ touching $SB$ and the circle with center $B$ touching $SA$ are tangent. Proposed by: A.Zaslavsky

2012 LMT, Individual

[b]p1[/b]. Evaluate $1! + 2! + 3! + 4! + 5! $ (where $n!$ is the product of all integers from $1$ to $n$, inclusive). [b]p2.[/b] Harold opens a pack of Bertie Bott's Every Flavor Beans that contains $10$ blueberry, $10$ watermelon, $3$ spinach and $2$ earwax-flavored jelly beans. If he picks a jelly bean at random, then what is the probability that it is not spinach-flavored? [b]p3.[/b] Find the sum of the positive factors of $32$ (including $32$ itself). [b]p4.[/b] Carol stands at a flag pole that is $21$ feet tall. She begins to walk in the direction of the flag's shadow to say hi to her friends. When she has walked $10$ feet, her shadow passes the flag's shadow. Given that Carol is exactly $5$ feet tall, how long in feet is her shadow? [b]p5.[/b] A solid metal sphere of radius $7$ cm is melted and reshaped into four solid metal spheres with radii $1$, $5$, $6$, and $x$ cm. What is the value of $x$? [b]p6.[/b] Let $A = (2,-2)$ and $B = (-3, 3)$. If $(a,0)$ and $(0, b)$ are both equidistant from $A$ and $B$, then what is the value of $a + b$? [b]p7.[/b] For every flip, there is an $x^2$ percent chance of flipping heads, where $x$ is the number of flips that have already been made. What is the probability that my first three flips will all come up tails? [b]p8.[/b] Consider the sequence of letters $Z\,\,W\,\,Y\,\,X\,\,V$. There are two ways to modify the sequence: we can either swap two adjacent letters or reverse the entire sequence. What is the least number of these changes we need to make in order to put the letters in alphabetical order? [b]p9.[/b] A square and a rectangle overlap each other such that the area inside the square but outside the rectangle is equal to the area inside the rectangle but outside the square. If the area of the rectangle is $169$, then find the side length of the square. [b]p10.[/b] If $A = 50\sqrt3$, $B = 60\sqrt2$, and $C = 85$, then order $A$, $B$, and $C$ from least to greatest. [b]p11.[/b] How many ways are there to arrange the letters of the word $RACECAR$? (Identical letters are assumed to be indistinguishable.) [b]p12.[/b] A cube and a regular tetrahedron (which has four faces composed of equilateral triangles) have the same surface area. Let $r$ be the ratio of the edge length of the cube to the edge length of the tetrahedron. Find $r^2$. [b]p13.[/b] Given that $x^2 + x + \frac{1}{x} +\frac{1}{x^2} = 10$, find all possible values of $x +\frac{1}{x}$ . [b]p14.[/b] Astronaut Bob has a rope one unit long. He must attach one end to his spacesuit and one end to his stationary spacecraft, which assumes the shape of a box with dimensions $3\times 2\times 2$. If he can attach and re-attach the rope onto any point on the surface of his spacecraft, then what is the total volume of space outside of the spacecraft that Bob can reach? Assume that Bob's size is negligible. [b]p15.[/b] Triangle $ABC$ has $AB = 4$, $BC = 3$, and $AC = 5$. Point $B$ is reflected across $\overline{AC}$ to point $B'$. The lines that contain $AB'$ and $BC$ are then drawn to intersect at point $D$. Find $AD$. [b]p16.[/b] Consider a rectangle $ABCD$ with side lengths $5$ and $12$. If a circle tangent to all sides of $\vartriangle ABD$ and a circle tangent to all sides of $\vartriangle BCD$ are drawn, then how far apart are the centers of the circles? [b]p17.[/b] An increasing geometric sequence $a_0, a_1, a_2,...$ has a positive common ratio. Also, the value of $a_3 + a_2 - a_1 - a_0$ is equal to half the value of $a_4 - a_0$. What is the value of the common ratio? [b]p18.[/b] In triangle $ABC$, $AB = 9$, $BC = 11$, and $AC = 16$. Points $E$ and $F$ are on $\overline{AB}$ and $\overline{BC}$, respectively, such that $BE = BF = 4$. What is the area of triangle $CEF$? [b]p19.[/b] Xavier, Yuna, and Zach are running around a circular track. The three start at one point and run clockwise, each at a constant speed. After $8$ minutes, Zach passes Xavier for the first time. Xavier first passes Yuna for the first time in $12$ minutes. After how many seconds since the three began running did Zach first pass Yuna? [b]p20.[/b] How many unit fractions are there such that their decimal equivalent has a cycle of $6$ repeating integers? Exclude fractions that repeat in cycles of $1$, $2$, or $3$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2001 India IMO Training Camp, 3

In a triangle $ABC$ with incircle $\omega$ and incenter $I$ , the segments $AI$ , $BI$ , $CI$ cut $\omega$ at $D$ , $E$ , $F$ , respectively. Rays $AI$ , $BI$ , $CI$ meet the sides $BC$ , $CA$ , $AB$ at $L$ , $M$ , $N$ respectively. Prove that: \[AL+BM+CN \leq 3(AD+BE+CF)\] When does equality occur?

Today's calculation of integrals, 860

For a function $f(x)\ (x\geq 1)$ satisfying $f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t}dt$, answer the questions as below. (a) Find $f(x)$ and the $y$-coordinate of the inflection point of the curve $y=f(x)$. (b) Find the area of the figure bounded by the tangent line of $y=f(x)$ at the point $(e,\ f(e))$, the curve $y=f(x)$ and the line $x=1$.

1985 AIME Problems, 11

An ellipse has foci at $(9,20)$ and $(49,55)$ in the $xy$-plane and is tangent to the $x$-axis. What is the length of its major axis?

Estonia Open Senior - geometry, 2008.2.3

Two circles are drawn inside a parallelogram $ABCD$ so that one circle is tangent to sides $AB$ and $AD$ and the other is tangent to sides $CB$ and $CD$. The circles touch each other externally at point $K$. Prove that $K$ lies on the diagonal $AC$.

2023 Switzerland - Final Round, 1

Let $ABC$ be an acute triangle with incenter $I$. On its circumcircle, let $M_A$, $M_B$ and $M_C$ be the midpoints of minor arcs $BC, CA$ and $AB$, respectively. Prove that the reflection $M_A$ over the line $IM_B$ lies on the circumcircle of the triangle $IM_BM_C$.

2019 Belarusian National Olympiad, 11.1

[b]a)[/b] Find all real numbers $a$ such that the parabola $y=x^2-a$ and the hyperbola $y=1/x$ intersect each other in three different points. [b]b)[/b] Find the locus of centers of circumcircles of such triples of intersection points when $a$ takes all possible values. [i](I. Gorodnin)[/i]

2012 Moldova Team Selection Test, 3

Let $ABC$ be an equilateral triangle with $AB=a$ and $M\in(AB)$ a fixed point. Points $N\in(AC)$ and $P\in(BC)$ are taken such that the perimeter of $MNP$ is minimal. If the ratio between the areas of triangles $MNP$ and $ABC$ is $\textstyle\frac{7}{30},$ find the perimeter of triangle $MNP.$