Found problems: 25757
2018 Dutch IMO TST, 3
Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude through $A$. On $AD$, there are distinct points $E$ and $F$ such that $|AE| = |BE|$ and $|AF| =|CF|$. A point$ T \ne D$ satises $\angle BTE = \angle CTF = 90^o$. Show that $|TA|^2 =|TB| \cdot |TC|$.
2012 Baltic Way, 12
Let $P_0$, $P_1$, $\dots$, $P_8 = P_0$ be successive points on a circle and $Q$ be a point inside the polygon $P_0 P_1 \dotsb P_7$ such that $\angle P_{i - 1} QP_i = 45^\circ$ for $i = 1$, $\dots$, 8. Prove that the sum
\[\sum_{i = 1}^8 P_{i - 1} P_i^2\]
is minimal if and only if $Q$ is the centre of the circle.
JBMO Geometry Collection, 2003
Let $D$, $E$, $F$ be the midpoints of the arcs $BC$, $CA$, $AB$ on the circumcircle of a triangle $ABC$ not containing the points $A$, $B$, $C$, respectively. Let the line $DE$ meets $BC$ and $CA$ at $G$ and $H$, and let $M$ be the midpoint of the segment $GH$. Let the line $FD$ meet $BC$ and $AB$ at $K$ and $J$, and let $N$ be the midpoint of the segment $KJ$.
a) Find the angles of triangle $DMN$;
b) Prove that if $P$ is the point of intersection of the lines $AD$ and $EF$, then the circumcenter of triangle $DMN$ lies on the circumcircle of triangle $PMN$.
2021 Sharygin Geometry Olympiad, 9.1
Three cevians concur at a point lying inside a triangle. The feet of these cevians divide the sides into six segments, and the lengths of these segments form (in some order) a geometric progression. Prove that the lengths of the cevians also form a geometric progression.
2009 All-Russian Olympiad Regional Round, 10.6
Circle $\omega$ inscribed in triangle $ABC$ touches sides $BC$, $CA$, $AB$ at points $A_1$, $B_1$ and $C_1$ respectively. On the extension of segment $AA_1$, point $A$ is taken as point D such that $AD= AC_1$. Lines $DB_1$ and $DC_1$ intersect a second time circle $\omega$ at points $B_2$ and $C_2$. Prove that $B_2C_2$ is the diameter of circle of $\omega$.
Denmark (Mohr) - geometry, 1992.4
Let $a, b$ and $c$ denote the side lengths and $m_a, m_b$ and $m_c$ of the median's lengths in an arbitrary triangle. Show that $$\frac34 < \frac{m_a + m_b + m_c}{a + b + c}<1$$ Also show that there is no narrower range that for each triangle that contains the fraction
$$\frac{m_a + m_b + m_c}{a + b + c}$$
1993 Polish MO Finals, 3
Find out whether it is possible to determine the volume of a tetrahedron knowing the areas of its faces and its circumradius.
1991 China Team Selection Test, 1
We choose 5 points $A_1, A_2, \ldots, A_5$ on a circumference of radius 1 and centre $O.$ $P$ is a point inside the circle. Denote $Q_i$ as the intersection of $A_iA_{i+2}$ and $A_{i+1}P$, where $A_7 = A_2$ and $A_6 = A_1.$ Let $OQ_i = d_i, i = 1,2, \ldots, 5.$ Find the product $\prod^5_{i=1} A_iQ_i$ in terms of $d_i.$
III Soros Olympiad 1996 - 97 (Russia), 9.6
Let $ABC$ be an isosceles right triangle with hypotenuse $AB$, $D$ be some point in the plane such that $2CD = AB$ and point $C$ inside the triangle $ABD$. We construct two rays with a start in $C$, intersecting $AD$ and $BD$ and perpendicular to them. On the first one, intersecting $AD$, we will plot the segment $CK = AD$, and on the second one - $CM = BD$. Prove that points $M$, $D$ and $K$ lie on the same line.
2023 Romania Team Selection Test, P3
In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$.
Prove that $B, C, X,$ and $Y$ are concyclic.
2012 Olympic Revenge, 6
Let $ABC$ be an scalene triangle and $I$ and $H$ its incenter, ortocenter respectively.
The incircle touchs $BC$, $CA$ and $AB$ at $D,E$ an $F$. $DF$ and $AC$ intersects at $K$ while $EF$ and $BC$ intersets at $M$.
Shows that $KM$ cannot be paralel to $IH$.
PS1: The original problem without the adaptation apeared at the Brazilian Olympic Revenge 2011 but it was incorrect.
PS2:The Brazilian Olympic Revenge is a competition for teachers, and the problems are created by the students.
Sorry if I had some English mistakes here.
2019 India IMO Training Camp, P2
Let $ABC$ be a triangle with $\angle A=\angle C=30^{\circ}.$ Points $D,E,F$ are chosen on the sides $AB,BC,CA$ respectively so that $\angle BFD=\angle BFE=60^{\circ}.$ Let $p$ and $p_1$ be the perimeters of the triangles $ABC$ and $DEF$, respectively. Prove that $p\le 2p_1.$
1965 AMC 12/AHSME, 37
Point $ E$ is selected on side $ AB$ of triangle $ ABC$ in such a way that $ AE: EB \equal{} 1: 3$ and point $ D$ is selected on side $ BC$ such that $ CD: DB \equal{} 1: 2$. The point of intersection of $ AD$ and $ CE$ is $ F$. Then $ \frac {EF}{FC} \plus{} \frac {AF}{FD}$ is:
$ \textbf{(A)}\ \frac {4}{5} \qquad \textbf{(B)}\ \frac {5}{4} \qquad \textbf{(C)}\ \frac {3}{2} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ \frac {5}{2}$
2012 Sharygin Geometry Olympiad, 16
Given right-angled triangle $ABC$ with hypothenuse $AB$. Let $M$ be the midpoint of $AB$ and $O$ be the center of circumcircle $\omega$ of triangle $CMB$. Line $AC$ meets $\omega$ for the second time in point $K$. Segment $KO$ meets the circumcircle of triangle $ABC$ in point $L$. Prove that segments $AL$ and $KM$ meet on the circumcircle of triangle $ACM$.
2007 Indonesia TST, 1
Given triangle $ ABC$ and its circumcircle $ \Gamma$, let $ M$ and $ N$ be the midpoints of arcs $ BC$ (that does not contain $ A$) and $ CA$ (that does not contain $ B$), repsectively. Let $ X$ be a variable point on arc $ AB$ that does not contain $ C$. Let $ O_1$ and $ O_2$ be the incenter of triangle $ XAC$ and $ XBC$, respectively. Let the circumcircle of triangle $ XO_1O_2$ meets $ \Gamma$ at $ Q$.
(a) Prove that $ QNO_1$ and $ QMO_2$ are similar.
(b) Find the locus of $ Q$ as $ X$ varies.
2022 IMAR Test, 3
Given is a parallelogram $XYZT$, and the variable points $A, B, C, D$ lie on the sides $XY, XT, TZ, ZY$ respectively, so that $ABCD$ is cyclic with circumcenter $O$, $AC \parallel XT$, and $BD \parallel XY$. Let $P$ be the intersection point of the lines $AD$ and $BC$, and let $Q$ be the intersection of the lines $AB$ and $CD$. Prove that the circle $(POQ)$ passes through a fixed point.
2021 China Second Round A2, 1
As shown in the figure, in the acute angle $\vartriangle ABC$, $AB > AC$, $M$ is the midpoint of the minor arc $BC$ of the circumcircle $\Omega$ of $\vartriangle ABC$. $K$ is the intersection point of the bisector of the exterior angle $\angle BAC$ and the extension line of $BC$. From point $A$ draw a line perpendicular on $BC$ and take a point $D$ (different from $A$) on that line , such that $DM = AM$. Let the circumscribed circle of $\vartriangle ADK$ intersect the circle $\Omega$ at point $A$ and at another point $T$. Prove that $AT$ bisects line segment $BC$.
[img]https://cdn.artofproblemsolving.com/attachments/1/3/6fde30405101620828d63ae31b8c0ffcec972f.png[/img]
2016 Korea Winter Program Practice Test, 1
There is circle $\omega$ and $A, B$ on it. Circle $\gamma_1$ tangent to $\omega$ on $T$ and $AB$ on $D$. Circle $\gamma_2$ tangent to $\omega$ on $S$ and $AB$ on $E$. (like the figure below) Let $AB\cap TS=C$.
Prove that $CA=CB$ iff $CD=CE$
2007 ISI B.Math Entrance Exam, 4
Let $ABC$ be an isosceles triangle with $AB=AC=20$ . Let $P$ be a point inside the triangle $ABC$ such that the sum of the distances of $P$ to $AB$ and $AC$ is $1$ . Describe the locus of all such points inside triangle $ABC$.
2021 Science ON Juniors, 3
Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $P$. A random line $\ell$ cuts $\omega_1$ at $A$ and $C$ and $\omega_2$ at $B$ and $D$ (points $A,C,B,D$ are in this order on $\ell$). Line $AP$ meets $\omega_2$ again at $E$ and line $BP$ meets $\omega_1$ again at $F$. Prove that the radical axis of circles $(PCD)$ and $(PEF)$ is parallel to $\ell$.
\\ \\
[i](Vlad Robu)[/i]
1997 Bosnia and Herzegovina Team Selection Test, 2
In isosceles triangle $ABC$ with base side $AB$, on side $BC$ it is given point $M$. Let $O$ be a circumcenter and $S$ incenter of triangle $ABC$. Prove that $$ SM \mid \mid AC \Leftrightarrow OM \perp BS$$
2004 All-Russian Olympiad, 3
Let $ ABCD$ be a quadrilateral which is a cyclic quadrilateral and a tangent quadrilateral simultaneously. (By a [i]tangent quadrilateral[/i], we mean a quadrilateral that has an incircle.)
Let the incircle of the quadrilateral $ ABCD$ touch its sides $ AB$, $ BC$, $ CD$, and $ DA$ in the points $ K$, $ L$, $ M$, and $ N$, respectively. The exterior angle bisectors of the angles $ DAB$ and $ ABC$ intersect each other at a point $ K^{\prime}$. The exterior angle bisectors of the angles $ ABC$ and $ BCD$ intersect each other at a point $ L^{\prime}$. The exterior angle bisectors of the angles $ BCD$ and $ CDA$ intersect each other at a point $ M^{\prime}$. The exterior angle bisectors of the angles $ CDA$ and $ DAB$ intersect each other at a point $ N^{\prime}$. Prove that the straight lines $ KK^{\prime}$, $ LL^{\prime}$, $ MM^{\prime}$, and $ NN^{\prime}$ are concurrent.
2017 Azerbaijan EGMO TST, 1
Given an equilateral triangle $ABC$ and a point $P$ so that the distances $P$ to $A$ and to $C$ are not farther than the distances $P$ to $B$. Prove that $PB = PA + PC$ if and only if $P$ lies on the circumcircle of $\vartriangle ABC$.
2011 AMC 12/AHSME, 12
A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square?
[asy]
unitsize(10mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2));
draw(A--B--C--D--E--F--G--H--cycle);
draw(A--D);
draw(B--G);
draw(C--F);
draw(E--H);
[/asy]
$ \textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$
2011 Indonesia TST, 2
On a line $\ell$ there exists $3$ points $A, B$, and $C$ where $B$ is located between $A$ and $C$. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be circles with $AC, AB$, and $BC$ as diameter respectively; $BD$ is a segment, perpendicular to $\ell$ with $D$ on $\Gamma_1$. Circles $\Gamma_4, \Gamma_5, \Gamma_6$ and $\Gamma_7$ satisfies the following conditions:
$\bullet$ $\Gamma_4$ touches $\Gamma_1, \Gamma_2$, and$ BD$.
$\bullet$ $\Gamma_5$ touches $\Gamma_1, \Gamma_3$, and $BD$.
$\bullet$ $\Gamma_6$ touches $\Gamma_1$ internally, and touches $\Gamma_2$ and $\Gamma_3$ externally.
$\bullet$ $\Gamma_7$ passes through $B$ and the tangent points of $\Gamma_2$ with $\Gamma_6$, and $\Gamma_3$ with $\Gamma_6$.
Show that the circles $\Gamma_4, \Gamma_5$, and $\Gamma_7$ are congruent.