Found problems: 25757
DMM Devil Rounds, 2009
[b]p1.[/b] Find all positive integers $n$ such that $n^3 - 14n^2 + 64n - 93$ is prime.
[b]p2.[/b] Let $a, b, c$ be real numbers such that $0 \le a, b, c \le 1$. Find the maximum value of
$$\frac{a}{1 + bc}+\frac{b}{1 + ac}+\frac{c}{1 + ab}$$
[b]p3.[/b] Find the maximum value of the function $f(x, y, z) = 4x + 3y + 2z$ on the ellipsoid $16x^2 + 9y^2 + 4z^2 = 1$
[b]p4.[/b] Let $x_1,..., x_n$ be numbers such that $x_1+...+x_n = 2009$. Find the minimum value of $x^2_1+...+x^2_n$ (in term of $n$).
[b]p5.[/b] Find the number of odd integers between $1000$ and $9999$ that have at least 3 distinct digits.
[b]p6.[/b] Let $A_1,A_2,...,A_{2^n-1}$ be all the possible nonempty subsets of $\{1, 2, 3,..., n\}$. Find the maximum value of $a_1 + a_2 + ... + a_{2^n-1}$ where $a_i \in A_i$ for each $i = 1, 2,..., 2^n - 1$.
[b]p7.[/b] Find the rightmost digit when $41^{2009}$ is written in base $7$.
[b]p8.[/b] How many integral ordered triples $(x, y, z)$ satisfy the equation $x+y+z = 2009$, where $10 \le x < 31$, $100 < z < 310$ and $y \ge 0$.
[b]p9.[/b] Scooby has a fair six-sided die, labeled $1$ to $6$, and Shaggy has a fair twenty-sided die, labeled $1$ to $20$. During each turn, they both roll their own dice at the same time. They keep rolling the die until one of them rolls a 5. Find the probability that Scooby rolls a $5$ before Shaggy does.
[b]p10.[/b] Let $N = 1A323492110877$ where $A$ is a digit in the decimal expansion of $N$. Suppose $N$ is divisible by $7$. Find $A$.
[b]p11.[/b] Find all solutions $(x, y)$ of the equation $\tan^4(x+y)+\cot^4(x+y) = 1-2x-x^2$, where $-\frac{\pi}{2}
\le x; y \le \frac{\pi}{2}$
[b]p12.[/b] Find the remainder when $\sum^{50}_{k=1}k!(k^2 + k - 1)$ is divided by $1008$.
[b]p13.[/b] The devil set of a positive integer $n$, denoted $D(n)$, is defined as follows:
(1) For every positive integer $n$, $n \in D(n)$.
(2) If $n$ is divisible by $m$ and $m < n$, then for every element $a \in D(m)$, $a^3$ must be in $D(n)$.
Furthermore, call a set $S$ scary if for any $a, b \in S$, $a < b$ implies that $b$ is divisible by $a$. What is the least positive integer $n$ such that $D(n)$ is scary and has at least $2009$ elements?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1996 Baltic Way, 2
In the figure below, you see three half-circles. The circle $C$ is tangent to two of the half-circles and to the line $PQ$ perpendicular to the diameter $AB$. The area of the shaded region is $39\pi$, and the area of the circle $C$ is $9\pi$. Find the length of the diameter $AB$.
2017 Silk Road, 2
The quadrilateral $ABCD$ is inscribed in the circle ω. The diagonals $AC$ and $BD$ intersect at the point $O$. On the segments $AO$ and $DO$, the points $E$ and $F$ are chosen, respectively. The straight line $EF$ intersects ω at the points $E_1$ and $F_1$. The circumscribed circles of the triangles $ADE$ and $BCF$ intersect the segment $EF$ at the points $E_2$ and $F_2$ respectively (assume that all the points $E, F, E_1, F_1, E_2$ and $F_2$ are different). Prove that $E_1E_2 = F_1F_2$.
$(N. Sedrakyan)$
2011 Today's Calculation Of Integral, 697
Find the volume of the solid of the domain expressed by the inequality $x^2-x\leq y\leq x$, generated by a rotation about the line $y=x.$
2004 USAMO, 1
Let $ABCD$ be a quadrilateral circumscribed about a circle, whose interior and exterior angles are at least 60 degrees. Prove that
\[
\frac{1}{3}|AB^3 - AD^3| \le |BC^3 - CD^3| \le 3|AB^3 - AD^3|.
\]
When does equality hold?
2018 Turkey Team Selection Test, 9
For a triangle $T$ and a line $d$, if the feet of perpendicular lines from a point in the plane to the edges of $T$ all lie on $d$, say $d$ focuses $T$. If the set of lines focusing $T_1$ and the set of lines focusing $T_2$ are the same, say $T_1$ and $T_2$ are equivalent. Prove that, for any triangle in the plane, there exists exactly one equilateral triangle which is equivalent to it.
1997 South africa National Olympiad, 1
From an initial triangle $\Delta A_0B_0C_0$, a sequence of triangles $\Delta A_1B_1C_1$, $A_2B_2C_2$, ... is formed such that, at each stage, $A_{k + 1}$, $B_{k + 1}$ and $C_{k + 1}$ are the points where the incircle of $\Delta A_kB_kC_k$ touches the sides $B_kC_k$, $C_kA_k$ and $A_kB_k$ respectively.
(a) Express $\angle A_{k + 1}B_{k + 1}C_{k + 1}$ in terms of $\angle A_kB_kC_k$.
(b) Deduce that, as $k$ increases, $\angle A_kB_kC_k$ tends to $60^{\circ}$.
2022 Azerbaijan National Mathematical Olympiad, 5
Let $\omega$ be the circumcircle of an acute angled tirangle $ABC.$ The line tangent to $\omega$ at $A$ intersects the line $BC$ at the point $T.$ Let the midpoint of segment $AT$ be $N,$ and the centroid of $\triangle ABC$ be the point $G.$ The other tangent line drawn from $N$ to $\omega$ intersects $\omega$ at the point $L.$ The line $LG$ meets $\omega$ at $S\neq L.$
Prove that $AS\parallel BC.$
2014 Contests, 3
Let $r,R$ and $r_a$ be the radii of the incircle, circumcircle and A-excircle of the triangle $ABC$ with $AC>AB$, respectively. $I,O$ and $J_A$ are the centers of these circles, respectively. Let incircle touches the $BC$ at $D$, for a point $E \in (BD)$ the condition $A(IEJ_A)=2A(IEO)$ holds.
Prove that
\[ED=AC-AB \iff R=2r+r_a.\]
Ukrainian TYM Qualifying - geometry, IX.12
Let $AB,AC$ and $AD$ be the edges of a cube, $AB=\alpha$. Point $E$ was marked on the ray $AC$ so that $AE=\lambda \alpha$, and point $F$ was marked on the ray $AD$ so that $AF=\mu \alpha$ ($\mu> 0, \lambda >0$). Find (characterize) pairs of numbers $\lambda$ and $\mu$ such that the cross-sectional area of a cube by any plane parallel to the plane $BCD$ is equal to the cross-sectional area of the tetrahedron $ABEF$ by the same plane.
2005 China Team Selection Test, 3
Find the least positive integer $n$ ($n\geq 3$), such that among any $n$ points (no three are collinear) in the plane, there exist three points which are the vertices of a non-isoscele triangle.
2017 NIMO Problems, 6
Triangle $\triangle ABC$ has circumcenter $O$ and incircle $\gamma$. Suppose that $\angle BAC =60^\circ$ and $O$ lies on $\gamma$. If \[ \tan B \tan C = a + \sqrt{b} \] for positive integers $a$ and $b$, compute $100a+b$.
[i]Proposed by Kaan Dokmeci[/i]
1982 Miklós Schweitzer, 7
Let $ V$ be a bounded, closed, convex set in $ \mathbb{R}^n$, and denote by $ r$ the radius of its circumscribed sphere (that is, the radius of the smallest sphere that contains $ V$). Show that $ r$ is the only real number with the following property: for any finite number of points in $ V$, there exists a point in $ V$ such that the arithmetic mean of its distances from the other points is equal to $ r$.
[i]Gy. Szekeres[/i]
1966 IMO Shortlist, 4
Given $5$ points in the plane, no three of them being collinear. Show that among these $5$ points, we can always find $4$ points forming a convex quadrilateral.
2021 Thailand Online MO, P4
Let $ABC$ be an acute triangle such that $\angle B > \angle C$. Let $D$ and $E$ be the points on the segments $BC$ and $CA$, respectively, such that $AD$ bisects $\angle A$ and $BE\perp AC$. Finally, let $M$ be the midpoint of the side $BC$. Suppose that the circumcircle of $\triangle CDE$ intersects $AD$ again at a point $X$ different from $D$. Prove that $\angle XME = 90^{\circ} - \angle BAC$.
2021 Caucasus Mathematical Olympiad, 4
In an acute triangle $ABC$ let $AH_a$ and $BH_b$ be altitudes. Let $H_aH_b$ intersect the circumcircle of $ABC$ at $P$ and $Q$. Let $A'$ be the reflection of $A$ in $BC$, and let $B'$ be the reflection of $B$ in $CA$. Prove that $A', B'$, $P$, $Q$ are concyclic.
2021 Oral Moscow Geometry Olympiad, 3
$ABCD$ is a convex quadrilateral such that $\angle A = \angle C < 90^{\circ}$ and $\angle ABD = 90^{\circ}$. $M$ is the midpoint of $AC$. Prove that $MB$ is perpendicular to $CD$.
1986 IMO Longlists, 9
In a triangle $ABC$, $\angle BAC = 100^{\circ}, AB = AC$. A point $D$ is chosen on the side $AC$ such that $\angle ABD = \angle CBD$. Prove that $AD + DB = BC.$
I Soros Olympiad 1994-95 (Rus + Ukr), 10.2
Given a triangle $ABC$ and a point $O$ inside it, it is known that $AB\le BC\le CA$. Prove that $$OA+OB+OC<BC+CA.$$
2011 Harvard-MIT Mathematics Tournament, 3
Let $ABCDEF$ be a regular hexagon of area $1$. Let $M$ be the midpoint of $DE$. Let $X$ be the intersection of $AC$ and $BM$, let $Y$ be the intersection of $BF$ and $AM$, and let $Z$ be the intersection of $AC$ and $BF$. If $[P]$ denotes the area of a polygon $P$ for any polygon $P$ in the plane, evaluate $[BXC] + [AYF] + [ABZ] - [MXZY]$.
2008 Alexandru Myller, 1
$ O $ is the circumcentre of $ ABC $ and $ A_1\neq A $ is the point on $ AO $ and the circumcircle of $ ABC. $ The centers of mass of $ ABC, A_1BC $ are $ G,G_1, $ respectively, and $ P $ is the intersection of $ AG_1 $ with $ OG. $ Show that $ \frac{PG}{PO}=\frac{2}{3} . $
[i]Gabriel Popa, Paul Georgescu[/i]
1963 Leningrad Math Olympiad, grade 8
[b]8.1[/b] On the median drawn from the vertex of the triangle to the base, point $A$ is taken. The sum of the distances from $A$ to the sides of the triangle is equal to $s$. Find the distances from $A$ to the sides if the lengths of the sides are equal to $x$ and $y$.
[b]8.2[/b] Fraction $0, abc...$ is composed according to the following rule: $a$ and $c$ are arbitrary digits, and each next digit is equal to the remainder of the sum of the previous two digits when divided by $10$. Prove that this fraction is purely periodic.
[b]8.3[/b] Two convex polygons with $m$ and $n$ sides are drawn on the plane ($m>n$). What is the greatest possible number of parts, they can break the plane?
[b]8.4 [/b]The sum of three integers that are perfect squares is divisible by $9$. Prove that among them, there are two numbers whose difference is divisible by $9$.
[b]8.5 / 9.5[/b] Given $k+2$ integers. Prove that among them there are two integers such that either their sum or their difference is divisible by $2k$.
[b]8.6[/b] A right angle rotates around its vertex. Find the locus of the midpoints of the segments connecting the intersection points sides of an angle and a given circle.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983460_1963_leningrad_math_olympiad]here[/url].
Ukrainian TYM Qualifying - geometry, I.5
The heights of a triangular pyramid intersect at one point. Prove that all flat angles at any vertex of the surface are either acute, or right, or obtuse.
2012 CentroAmerican, 2
Let $\gamma$ be the circumcircle of the acute triangle $ABC$. Let $P$ be the midpoint of the minor arc $BC$. The parallel to $AB$ through $P$ cuts $BC, AC$ and $\gamma$ at points $R,S$ and $T$, respectively. Let $K \equiv AP \cap BT$ and $L \equiv BS \cap AR$. Show that $KL$ passes through the midpoint of $AB$ if and only if $CS = PR$.
2005 Indonesia MO, 4
Let $ M$ be a point in triangle $ ABC$ such that $ \angle AMC\equal{}90^{\circ}$, $ \angle AMB\equal{}150^{\circ}$, $ \angle BMC\equal{}120^{\circ}$. The centers of circumcircles of triangles $ AMC,AMB,BMC$ are $ P,Q,R$, respectively. Prove that the area of $ \triangle PQR$ is greater than the area of $ \triangle ABC$.