This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2025 Harvard-MIT Mathematics Tournament, 4

Tags: geometry
A semicircle is inscribed in another semicircle if the smaller semicircle’s diameter is a chord of the larger semicircle, and the smaller semicircle’s arc is tangent to the diameter of the larger semicircle. Semicircle $S_1$ is inscribed in a semicircle $S_2,$ which is inscribed in another semicircle $S_3.$ The radii of $S_1$ and $S_3$ are $1$ and $10,$ respectively, and the diameters of $S_1$ and $S_3$ are parallel. The endpoints of the diameter of of $S_3$ are $A$ and $B,$ and $S_2$'s arc is tangent to $AB$ at $C.$ Compute $AC \cdot CB.$ [center] [img] https://cdn.artofproblemsolving.com/attachments/9/6/ad8c82afe131103793cb2684b45c6d20b00ef0.png [/img] [/center]

2018 HMNT, 7

A $5\times5$ grid of squares is filled with integers. Call a rectangle [i]corner-odd[/i] if its sides are grid lines and the sum of the integers in its four corners is an odd number. What is the maximum possible number of corner-odd rectangles within the grid? Note: A rectangles must have four distinct corners to be considered [i]corner-odd[/i]; i.e. no $1\times k$ rectangle can be [i]corner-odd[/i] for any positive integer $k$.

2019 Korea - Final Round, 2

For a rectangle $ABCD$ which is not a square, there is $O$ such that $O$ is on the perpendicular bisector of $BD$ and $O$ is in the interior of $\triangle BCD$. Denote by $E$ and $F$ the second intersections of the circle centered at $O$ passing through $B, D$ and $AB, AD$. $BF$ and $DE$ meets at $G$, and $X, Y, Z$ are the foots of the perpendiculars from $G$ to $AB, BD, DA$. $L, M, N$ are the foots of the perpendiculars from $O$ to $CD, BD, BC$. $XY$ and $ML$ meets at $P$, $YZ$ and $MN$ meets at $Q$. Prove that $BP$ and $DQ$ are parallel.

2002 Tournament Of Towns, 4

Tags: geometry
Quadrilateral $ABCD$ is circumscribed about a circle $\Gamma$ and $K,L,M,N$ are points of tangency of sides $AB,BC,CD,DA$ with $\Gamma$ respectively. Let $S\equiv KM\cap LN$. If quadrilateral $SKBL$ is cyclic then show that $SNDM$ is also cyclic.

2018 PUMaC Geometry B, 6

Tags: geometry
Triangle $ABC$ has $\angle{A}=90^\circ$, $\angle{C}=30^\circ$, and $AC=12$. Let the circumcircle of this triangle be $W$. Define $D$ to be the point on arc $BC$ not containing $A$ so that $\angle{CAD}=60^\circ$. Define points $E$ and $F$ to be the foots of the perpendiculars from $D$ to lines $AB$ and $AC$, respectively. Let $J$ be the intersection of line $EF$ with $W$, where $J$ is on the minor arc $AC$. The line $DF$ intersects $W$ at $H$ other than $D$. The area of the triangle $FHJ$ is in the form $\frac{a}{b}(\sqrt{c}-\sqrt{d})$ for positive integers $a,b,c,d,$ where $a,b$ are relatively prime, and the sum of $a,b,c,d$ is minimal. Find $a+b+c+d$.

2006 Princeton University Math Competition, 9

Consider all line segments of length $4$ with one end-point on the line $y = x$ and the other end-point on the line $y = 2x$. Find the equation of the locus of the midpoints of these line segments.

2004 Indonesia MO, 3

Tags: incenter , geometry
Given triangle $ ABC$ with $ C$ a right angle, show that the diameter of the incenter is $ a\plus{}b\minus{}c$, where $ a\equal{}BC$, $ b\equal{}CA$, and $ c\equal{}AB$.

1952 Polish MO Finals, 2

On the sides $ BC $, $ CA $, $ AB $ of the triangle $ ABC $, the points $ M $, $ N $, $ P $ are taken, respectively, in such a way that $$\frac{BM}{MC} = \frac{CN}{NA} = \frac{AP}{PB} = k, $$ where $ k $ means a given number greater than $ 1 $, then the segments $ AM $, $ BN $, $ CP $ were drawn . Given the area $ S $ of the triangle $ ABC $, calculate the area of the triangle bounded by the lines $ AM $, $ BN $ and $ CP $.

2023 4th Memorial "Aleksandar Blazhevski-Cane", P3

Let $ABCD$ be a cyclic quadrilateral inscribed in a circle $\omega$ with center $O$. The lines $AD$ and $BC$ meet at $E$, while the lines $AB$ and $CD$ meet at $F$. Let $P$ be a point on the segment $EF$ such that $OP \perp EF$. The circle $\Gamma_{1}$ passes through $A$ and $E$ and is tangent to $\omega$ at $A$, while $\Gamma_{2}$ passes through $C$ and $F$ and is tangent to $\omega$ at $C$. If $\Gamma_{1}$ and $\Gamma_{2}$ meet at $X$ and $Y$, prove that $PO$ is the bisector of $\angle XPY$. [i]Proposed by Nikola Velov[/i]

1987 IMO Longlists, 40

The perpendicular line issued from the center of the circumcircle to the bisector of angle $C$ in a triangle $ABC$ divides the segment of the bisector inside $ABC$ into two segments with ratio of lengths $\lambda$. Given $b = AC$ and $a = BC$, find the length of side $c.$

2003 Estonia National Olympiad, 3

In the acute-angled triangle $ABC$ all angles are greater than $45^o$. Let $AM$ and $BN$ be the heights of this triangle and let $X$ and $Y$ be the points on $MA$ and $NB$, respecively, such that $|MX| =|MB|$ and $|NY| =|NA|$. Prove that $MN$ and $XY$ are parallel.

2007 Greece JBMO TST, 1

Let $ABC$ be a triangle with $\angle A=105^o$ and $\angle C=\frac{1}{4} \angle B$. a) Find the angles $\angle B$ and $\angle C$ b) Let $O$ be the center of the circumscribed circle of the triangle $ABC$ and let $BD$ be a diameter of that circle. Prove that the distance of point $C$ from the line $BD$ is equal to $\frac{BD}{4}$.

Kyiv City MO Seniors 2003+ geometry, 2011.11.4

On the diagonals $AC$ and $BD$ of the inscribed quadrilateral A$BCD$, the points $X$ and $Y$ are marked, respectively, so that the quadrilateral $ABXY$ is a parallelogram. Prove that the circumscribed circles of triangles $BXD$ and $CYA$ have equal radii. (Vyacheslav Yasinsky)

2002 Croatia National Olympiad, Problem 1

In triangle $ABC$, the angles $\alpha=\angle A$ and $\beta=\angle B$ are acute. The isosceles triangle $ACD$ and $BCD$ with the bases $AC$ and $BC$ and $\angle ADC=\beta$, $\angle BEC=\alpha$ are constructed in the exterior of the triangle $ABC$. Let $O$ be the circumcenter of $\triangle ABC$. Prove that $DO+EO$ equals the perimeter of triangle $ABC$ if and only if $\angle ACB$ is right.

2022 BMT, 6

Tags: geometry
Equilateral triangle $ABC$ has side length $20$. Let $PQRS$ be a square such that $A$ is the midpoint of $\overline{RS}$ and $Q$ is the midpoint of $\overline{BC}$. Compute the area of $PQRS$.

1964 AMC 12/AHSME, 35

The sides of a triangle are of lengths $13$, $14$, and $15$. The altitudes of the triangle meet at point $H$. If $AD$ is the altitude to the side length $14$, what is the ratio $HD:HA$? $\textbf{(A) } 3 : 11\qquad \textbf{(B) } 5 : 11\qquad \textbf{(C) } 1 : 2\qquad \textbf{(D) }2 : 3\qquad \textbf{(E) }25 : 33$

2010 Czech And Slovak Olympiad III A, 2

A circular target with a radius of $12$ cm was hit by $19$ shots. Prove that the distance between two hits is less than $7$ cm.

2021 Turkey MO (2nd round), 4

Points $D$ and $E$ are taken on $[BC]$ and $[AC]$ of acute angled triangle $ABC$ such that $BD$ and $CE$ are angle bisectors. Projections of $D$ onto $BC$ and $BA$ are $P$ and $Q$, projections of $E$ onto $CA$ and $CB$ are $R$ and $S$. Let $AP \cap CQ=X$, $AS \cap BR=Y$ and $BX \cap CY=Z$. Show that $AZ \perp BC$.

1992 IMO Longlists, 65

If $A, B, C$, and $D$ are four distinct points in space, prove that there is a plane $P$ on which the orthogonal projections of $A, B, C$, and $D$ form a parallelogram (possibly degenerate).

2000 National Olympiad First Round, 33

Let $K$ be a point on the side $[AB]$, and $L$ be a point on the side $[BC]$ of the square $ABCD$. If $|AK|=3$, $|KB|=2$, and the distance of $K$ to the line $DL$ is $3$, what is $|BL|:|LC|$? $ \textbf{(A)}\ \frac78 \qquad\textbf{(B)}\ \frac{\sqrt 3}2 \qquad\textbf{(C)}\ \frac 87 \qquad\textbf{(D)}\ \frac 38 \qquad\textbf{(E)}\ \frac{\sqrt 2}2 $

2016 PUMaC Combinatorics A, 1

Chitoge is painting a cube; she can paint each face either black or white, but she wants no vertex of the cube to be touching three faces of the same color. In how many ways can Chitoge paint the cube? Two paintings of a cube are considered to be the same if you can rotate one cube so that it looks like the other cube.

2023 AIME, 14

A cube-shaped container has vertices $A$, $B$, $C$, and $D$ where $\overline{AB}$ and $\overline{CD}$ are parallel edges of the cube, and $\overline{AC}$ and $\overline{BD}$ are diagonals of the faces of the cube. Vertex $A$ of the cube is set on a horizontal plane $\mathcal P$ so that the plane of the rectangle $ABCD$ is perpendicular to $\mathcal P$, vertex $B$ is $2$ meters above $\mathcal P$, vertex $C$ is $8$ meters above $\mathcal P$, and vertex $D$ is $10$ meters above $\mathcal P$. The cube contains water whose surface is $7$ meters above $\mathcal P$. The volume of the water is $\tfrac mn$ cubic meters, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(250); defaultpen(linewidth(0.6)); pair A = origin, B = (6,3), X = rotate(40)*B, Y = rotate(70)*X, C = X+Y, Z = X+B, D = B+C, W = B+Y; pair P1 = 0.8*C+0.2*Y, P2 = 2/3*C+1/3*X, P3 = 0.2*D+0.8*Z, P4 = 0.63*D+0.37*W; pair E = (-20,6), F = (-6,-5), G = (18,-2), H = (9,8); filldraw(E--F--G--H--cycle,rgb(0.98,0.98,0.2)); fill(A--Y--P1--P4--P3--Z--B--cycle,rgb(0.35,0.7,0.9)); draw(A--B--Z--X--A--Y--C--X^^C--D--Z); draw(P1--P2--P3--P4--cycle^^D--P4); dot("$A$",A,S); dot("$B$",B,S); dot("$C$",C,N); dot("$D$",D,N); label("$\mathcal P$",(-13,4.5)); [/asy]

2012 Mexico National Olympiad, 6

Consider an acute triangle $ABC$ with circumcircle $\mathcal{C}$. Let $H$ be the orthocenter of $ABC$ and $M$ the midpoint of $BC$. Lines $AH$, $BH$ and $CH$ cut $\mathcal{C}$ again at points $D$, $E$, and $F$ respectively; line $MH$ cuts $\mathcal{C}$ at $J$ such that $H$ lies between $J$ and $M$. Let $K$ and $L$ be the incenters of triangles $DEJ$ and $DFJ$ respectively. Prove $KL$ is parallel to $BC$.

2007 AMC 12/AHSME, 2

Tags: geometry
An aquarium has a rectangular base that measures $ 100$ cm by $ 40$ cm and has a height of $ 50$ cm. It is filled with water to a height of $ 40$ cm. A brick with a rectangular base that measures $ 40$ cm by $ 20$ cm and a height of $ 10$ cm is placed in the aquarium. By how many centimeters does the water rise? $ \textbf{(A)}\ 0.5 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 1.5 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 2.5$

1967 Leningrad Math Olympiad, grade 6

[b]6.1[/b] The capacities of cubic vessels are in the ratio 1:8:27 and the volumes of liquid poured into them are 1: 2: 3. After this, from the first to a certain amount of liquid was poured into the second vessel, and then from the second in the third so that in all three vessels the liquid level became the same. After this, 128 4/7 liters were poured from the first vessel into the second, and from the second in the first back so much that the height of the liquid column in the first vessel became twice as large as in the second. It turned out that in the first vessel there were 100 fewer liters than at first. How much liquid was initially in each vessel? [b]6.2[/b] How many times a day do all three hands on a clock coincide, including the second hand? [b]6.3.[/b] Prove that in Leningrad there are two people who have the same number of familiar Leningraders. [b]6.4 / 7.4[/b] Each of the eight given different natural numbers less than $16$. Prove that among their pairwise differences there is at least at least three are the same. [b]6.5 / 7.6[/b] The distance AB is 100 km. From A and B , cyclists simultaneously ride towards each other at speeds of 20 km/h and 30 km/hour accordingly. Together with the first A, a fly flies out with speed 50 km/h, she flies until she meets the cyclist from B, after which she turns around and flies back until she meets the cyclist from A, after which turns around, etc. How many kilometers will the fly fly in the direction from A to B until the cyclists meet? PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988083_1967_leningrad_math_olympiad]here[/url].