This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2003 South africa National Olympiad, 6

Tags: geometry
In $\Delta ABC$, the sum of the sides is $2s$ and the radius of the incircle is $r$. Three semicircles with diameters $AB$, $BC$ and $CA$ are drawn on the outside of $ABC$. A circle with radius $t$ touches all three semicircles. Prove that \[ \frac{s}{2} < t \leq \frac{s}{2} + \left(1 - \frac{\sqrt{3}}{2}\right)r. \]

2019 BMT Spring, Tie 2

Tags: geometry
Define the [i]inverse [/i] of triangle $ABC$ with respect to a point $O$ in the following way: construct the circumcircle of $ABC$ and construct lines $AO$, $BO$, and $CO$. Let $A'$ be the other intersection of $AO$ and the circumcircle (if $AO$ is tangent, then let $A' = A$). Similarly define $B'$ and $C'$. Then $A'B'C'$ is the inverse of $ABC$ with respect to $O$. Compute the area of the inverse of the triangle given in the plane by $A(-6, -21)$, $B(-23, 10)$, $C(16, 23)$ with respect to $O(1, 3)$.

2018 JBMO Shortlist, G4

Let $ABC$ be a triangle with side-lengths $a, b, c$, inscribed in a circle with radius $R$ and let $I$ be ir's incenter. Let $P_1, P_2$ and $P_3$ be the areas of the triangles $ABI, BCI$ and $CAI$, respectively. Prove that $$\frac{R^4}{P_1^2}+\frac{R^4}{P_2^2}+\frac{R^4}{P_3^2}\ge 16$$

Estonia Open Senior - geometry, 2000.1.3

In the plane, the segments $AB$ and $CD$ are given, while the lines $AB$ and $CD$ intersect. Prove that the set of all points $P$ in the plane such that triangles $ABP$ and $CDP$ have equal areas , form two lines intersecting at the intersection of the lines $AB$ and $CD$.

2020 BMT Fall, 8

Tags: square , area , geometry
Let $ABCD$ be a unit square and let $E$ and $F$ be points inside $ABCD$ such that the line containing $\overline{EF}$ is parallel to $\overline{AB}$. Point $E$ is closer to $\overline{AD}$ than point $F$ is to $\overline{AD}$. The line containing $\overline{EF}$ also bisects the square into two rectangles of equal area. Suppose $[AEF B] = [DEFC] = 2[AED] = 2[BFC]$. The length of segment $\overline{EF}$ can be expressed as $m/n$ , where m and $n$ are relatively prime positive integers. Compute $m + n$.

2010 Germany Team Selection Test, 1

Tags: rhombus , geometry
The quadrilateral $ABCD$ is a rhombus with acute angle at $A.$ Points $M$ and $N$ are on segments $\overline{AC}$ and $\overline{BC}$ such that $|DM| = |MN|.$ Let $P$ be the intersection of $AC$ and $DN$ and let $R$ be the intersection of $AB$ and $DM.$ Prove that $|RP| = |PD|.$

1987 Traian Lălescu, 1.3

Let $ A'\neq A $ be the intersection of the bisector of $ \angle BAC $ with the circumcircle of the triangle $ ABC. $ Prove that $ AA'>\frac{AB+AC}{2}. $

2002 Singapore Team Selection Test, 1

Let $A, B, C, D, E$ be five distinct points on a circle $\Gamma$ in the clockwise order and let the extensions of $CD$ and $AE$ meet at a point $Y$ outside $\Gamma$. Suppose $X$ is a point on the extension of $AC$ such that $XB$ is tangent to $\Gamma$ at $B$. Prove that $XY = XB$ if and only if $XY$ is parallel $DE$.

1997 Romania Team Selection Test, 1

Tags: geometry , vector , ratio
Let $ABCDEF$ be a convex hexagon, and let $P= AB \cap CD$, $Q = CD \cap EF$, $R = EF \cap AB$, $S = BC \cap DE$, $T = DE \cap FA$, $U = FA \cap BC$. Prove that $\frac{PQ}{CD} = \frac{QR}{EF} = \frac{RP}{AB}$ if and only if $\frac{ST}{DE} = \frac{TU}{FA} = \frac{US}{BC}$

2001 Junior Balkan Team Selection Tests - Romania, 3

Let $ABCD$ be a quadrilateral inscribed in the circle $O$. For a point $E\in O$, its projections $K,L,M,N$ on the lines $DA,AB,BC,CD$, respectively, are considered. Prove that if $N$ is the orthocentre of the triangle $KLM$ for some point $E$, different from $A,B,C,D$, then this holds for every point $E$ of the circle.

2009 Romania Team Selection Test, 1

Given two (identical) polygonal domains in the Euclidean plane, it is not possible in general to superpose the two using only translations and rotations. Prove that this can however be achieved by splitting one of the domains into a finite number of polygonal subdomains which then fit together, via translations and rotations in the plane, to recover the other domain.

Kvant 2019, M2583

Tags: pentagon , geometry
On the side $DE$ and on the diagonal $BE$ of the regular pentagon $ABCDE$ we consider the squares $DEFG$ and $BEHI$. [list=a] [*] Prove that $A,I,$ and $G$ are collinear. [*] Prove that on this line lies also the centre $O$ of the square $BDJK$. [/list]

2008 Croatia Team Selection Test, 3

Point $ M$ is taken on side $ BC$ of a triangle $ ABC$ such that the centroid $ T_c$ of triangle $ ABM$ lies on the circumcircle of $ \triangle ACM$ and the centroid $ T_b$ of $ \triangle ACM$ lies on the circumcircle of $ \triangle ABM$. Prove that the medians of the triangles $ ABM$ and $ ACM$ from $ M$ are of the same length.

2007 Romania Team Selection Test, 2

Let $ABC$ be a triangle, and $\omega_{a}$, $\omega_{b}$, $\omega_{c}$ be circles inside $ABC$, that are tangent (externally) one to each other, such that $\omega_{a}$ is tangent to $AB$ and $AC$, $\omega_{b}$ is tangent to $BA$ and $BC$, and $\omega_{c}$ is tangent to $CA$ and $CB$. Let $D$ be the common point of $\omega_{b}$ and $\omega_{c}$, $E$ the common point of $\omega_{c}$ and $\omega_{a}$, and $F$ the common point of $\omega_{a}$ and $\omega_{b}$. Show that the lines $AD$, $BE$ and $CF$ have a common point.

2021 Argentina National Olympiad, 3

Tags: geometry , length , arc
A circle is divided into $2n$ equal arcs by $2n$ points. Find all $n>1$ such that these points can be joined in pairs using $n$ segments, all of different lengths and such that each point is the endpoint of exactly one segment.

2007 Croatia Team Selection Test, 5

Tags: geometry , symmetry , ratio
Let there be two circles. Find all points $M$ such that there exist two points, one on each circle such that $M$ is their midpoint.

Ukrainian TYM Qualifying - geometry, 2011.5

The circle $\omega_0$ touches the line at point A. Let $R$ be a given positive number. We consider various circles $\omega$ of radius $R$ that touch a line $\ell$ and have two different points in common with the circle $\omega_0$. Let $D$ be the touchpoint of the circle $\omega_0$ with the line $\ell$, and the points of intersection of the circles $\omega$ and $\omega_0$ are denoted by $B$ and $C$ (Assume that the distance from point $B$ to the line $\ell$ is greater than the distance from point $C$ to this line). Find the locus of the centers of the circumscribed circles of all such triangles $ABD$.

2007 IMO Shortlist, 2

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

1974 IMO Longlists, 4

Let $K_a,K_b,K_c$ with centres $O_a,O_b,O_c$ be the excircles of a triangle $ABC$, touching the interiors of the sides $BC,CA,AB$ at points $T_a,T_b,T_c$ respectively. Prove that the lines $O_aT_a,O_bT_b,O_cT_c$ are concurrent in a point $P$ for which $PO_a=PO_b=PO_c=2R$ holds, where $R$ denotes the circumradius of $ABC$. Also prove that the circumcentre $O$ of $ABC$ is the midpoint of the segment $PI$, where $I$ is the incentre of $ABC$.

2023 Korea Summer Program Practice Test, P3

$\triangle ABC$ is a triangle such that $\angle A = 60^{\circ}$. The incenter of $\triangle ABC$ is $I$. $AI$ intersects with $BC$ at $D$, $BI$ intersects with $CA$ at $E$, and $CI$ intersects with $AB$ at $F$, respectively. Also, the circumcircle of $\triangle DEF$ is $\omega$. The tangential line of $\omega$ at $E$ and $F$ intersects at $T$. Show that $\angle BTC \ge 60^{\circ}$

Novosibirsk Oral Geo Oly VII, 2023.5

One convex quadrilateral is inside another. Can it turn out that the sum of the lengths of the diagonals of the outer quadrilateral is less than the sum of the lengths of the diagonals of the inner?

1991 India National Olympiad, 5

Tags: incenter , geometry
Triangle $ABC$ has an incenter $I$. Let points $X$, $Y$ be located on the line segments $AB$, $AC$ respectively, so that $BX \cdot AB = IB^2$ and $CY \cdot AC = IC^2$. Given that the points $X, I, Y$ lie on a straight line, find the possible values of the measure of angle $A$.

1981 IMO Shortlist, 2

A sphere $S$ is tangent to the edges $AB,BC,CD,DA$ of a tetrahedron $ABCD$ at the points $E,F,G,H$ respectively. The points $E,F,G,H$ are the vertices of a square. Prove that if the sphere is tangent to the edge $AC$, then it is also tangent to the edge $BD.$

2008 Purple Comet Problems, 9

Find the sum of all the integers $N > 1$ with the properties that the each prime factor of $N $ is either $2, 3,$ or $5,$ and $N$ is not divisible by any perfect cube greater than $1.$

2013 ELMO Shortlist, 14

Let $O$ be a point (in the plane) and $T$ be an infinite set of points such that $|P_1P_2| \le 2012$ for every two distinct points $P_1,P_2\in T$. Let $S(T)$ be the set of points $Q$ in the plane satisfying $|QP| \le 2013$ for at least one point $P\in T$. Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$ [i]bad[/i] if there does not exist a line $\ell\in L$ parallel to (or coinciding with) $\ell_0$. (a) Prove that $L$ is nonempty. (b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every bad line $\ell_0$ passing through $O$, there exists a positive integer $n$ with $\ell(n) = \ell_0$. [i]Proposed by David Yang[/i]