This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2011 APMO, 3

Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .

1998 Baltic Way, 12

In a triangle $ABC$, $\angle BAC =90^{\circ}$. Point $D$ lies on the side $BC$ and satisfies $\angle BDA=2\angle BAD$. Prove that \[\frac{2}{AD}=\frac{1}{BD}+\frac{1}{CD} \]

2010 Paenza, 5

In $4$-dimensional space, a set of $1 \times 2 \times 3 \times 4$ bricks is given. Decide whether it is possible to build boxes of the following sizes using these bricks: [list]i) $2 \times 5 \times 7 \times 12$ ii) $5 \times 5 \times 10 \times 12$ iii) $6 \times 6 \times 6 \times 6$.[/list]

2014 Sharygin Geometry Olympiad, 1

Let $ABCD$ be a cyclic quadrilateral. Prove that $AC > BD$ if and only if $(AD-BC)(AB- CD) > 0$. (V. Yasinsky)

2022 Yasinsky Geometry Olympiad, 4

Tags: incenter , geometry
The intersection point $I$ of the angles bisectors of the triangle $ABC$ has reflections the points $P,Q,T$ wrt the triangle's sides . It turned out that the circle $s$ circumscribed around of the triangle $PQT$ , passes through the vertex $A$. Find the radius of the circumscribed circle of triangle $ABC$ if $BC = a$. (Gryhoriy Filippovskyi)

2018 Yasinsky Geometry Olympiad, 6

$AH$ is the altitude of the acute triangle $ABC$, $K$ and $L$ are the feet of the perpendiculars, from point $H$ on sides $AB$ and $AC$ respectively. Prove that the angles $BKC$ and $BLC$ are equal.

1981 All Soviet Union Mathematical Olympiad, 321

A number is written in the each vertex of a cube. It is allowed to add one to two numbers written in the ends of one edge. Is it possible to obtain the cube with all equal numbers if the numbers were initially as on the pictures:

1964 Polish MO Finals, 5

Given an acute angle and a circle inside the angle. Find a point $ M $ on the circle such that the sum of the distances of the point $ M $ from the sides of the angle is a minimum.

2022 Dutch IMO TST, 4

Tags: geometry
Let $ABC$ be a triangle with a right angle at $C$. Let $I$ be the incentre of triangle $ABC$, and let $D$ be the foot of the altitude from $C$ to $AB$. The incircle $\omega$ of triangle $ABC$ is tangent to sides $BC$, $CA$, and $AB$ at $A_1$, $B_1$, and $C_1$, respectively. Let $E$ and $F$ be the reflections of $C$ in lines $C_1A_1$ and $C_1B_1$, respectively. Let $K$ and $L$ be the reflections of $D$ in lines $C_1A_1$ and $C_1B_1$, respectively. Prove that the circumcircles of triangles $A_1EI$, $B_1FI$, and $C_1KL$ have a common point.

2014 Bulgaria National Olympiad, 3

Let $ABCD$ be a quadrilateral inscribed in a circle $k$. $AC$ and $BD$ meet at $E$. The rays $\overrightarrow{CB}, \overrightarrow{DA}$ meet at $F$. Prove that the line through the incenters of $\triangle ABE\,,\, \triangle ABF$ and the line through the incenters of $\triangle CDE\,,\, \triangle CDF$ meet at a point lying on the circle $k$. [i]Proposed by N. Beluhov[/i]

2007 Princeton University Math Competition, 2

A black witch's hat is in the classic shape of a cone on top of a circular brim. The cone has a slant height of $18$ inches and a base radius of $3$ inches. The brim has a radius of $5$ inches. What is the total surface area of the hat?

2010 Stanford Mathematics Tournament, 10

Tags: geometry
$A, B, C, D$ are points along a circle, in that order. $AC$ intersects $BD$ at $X$. If $BC=6$, $BX=4$, $XD=5$, and $AC=11$, fi nd $AB$

2014 Online Math Open Problems, 26

Let $ABC$ be a triangle with $AB=26$, $AC=28$, $BC=30$. Let $X$, $Y$, $Z$ be the midpoints of arcs $BC$, $CA$, $AB$ (not containing the opposite vertices) respectively on the circumcircle of $ABC$. Let $P$ be the midpoint of arc $BC$ containing point $A$. Suppose lines $BP$ and $XZ$ meet at $M$ , while lines $CP$ and $XY$ meet at $N$. Find the square of the distance from $X$ to $MN$. [i]Proposed by Michael Kural[/i]

2023 Durer Math Competition Finals, 5

For an acute triangle $ABC$, let $O$ be its circumcenter, and let $O_A,O_B,O_C$ be the circumcenter of $BCO,CAO,ABO$ respectively. Show that $AO_A,BO_B,CO_C$ are concurrent.

1972 IMO Longlists, 5

Given a pyramid whose base is an $n$-gon inscribable in a circle, let $H$ be the projection of the top vertex of the pyramid to its base. Prove that the projections of $H$ to the lateral edges of the pyramid lie on a circle.

Estonia Open Junior - geometry, 2007.1.2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.

2009 Germany Team Selection Test, 1

Consider cubes of edge length 5 composed of 125 cubes of edge length 1 where each of the 125 cubes is either coloured black or white. A cube of edge length 5 is called "big", a cube od edge length is called "small". A posititve integer $ n$ is called "representable" if there is a big cube with exactly $ n$ small cubes where each row of five small cubes has an even number of black cubes whose centres lie on a line with distances $ 1,2,3,4$ (zero counts as even number). (a) What is the smallest and biggest representable number? (b) Construct 45 representable numbers.

1987 IberoAmerican, 2

In a triangle $ABC$, $M$ and $N$ are the respective midpoints of the sides $AC$ and $AB$, and $P$ is the point of intersection of $BM$ and $CN$. Prove that, if it is possible to inscribe a circle in the quadrilateral $AMPN$, then the triangle $ABC$ is isosceles.

2008 Romania National Olympiad, 1

Let $ ABC$ be an acute angled triangle with $ \angle B > \angle C$. Let $ D$ be the foot of the altitude from $ A$ on $ BC$, and let $ E$ be the foot of the perpendicular from $ D$ on $ AC$. Let $ F$ be a point on the segment $ (DE)$. Show that the lines $ AF$ and $ BF$ are perpendicular if and only if $ EF\cdot DC \equal{} BD \cdot DE$.

2010 HMNT, 6

Tags: geometry
$AB$ is a diameter of circle $O$. $X$ is a point on $AB$ such that $AX = 3BX.$ Distinct circles $\omega_1$ and $\omega_2$ are tangent to $O$ at $T_1$ and $T_2$ and to $AB$ at $X$. The lines $T_1X$ and $T_2X$ intersect $O$ again at $S_1$ and $S_2$. What is the ratio $\frac{T_1T_2}{S_1S_2}$?

EMCC Accuracy Rounds, 2010

[b]p1.[/b] Calculate $\left( \frac12 + \frac13 + \frac14 \right)^2$. [b]p2.[/b] Find the $2010^{th}$ digit after the decimal point in the expansion of $\frac17$. [b]p3.[/b] If you add $1$ liter of water to a solution consisting of acid and water, the new solutions will contain of $30\%$ water. If you add another $5$ liters of water to the new solution, it will contain $36\frac{4}{11}\%$ water. Find the number of liters of acid in the original solution. [b]p4.[/b] John places $5$ indistinguishable blue marbles and $5$ indistinguishable red marbles into two distinguishable buckets such that each bucket has at least one blue marble and one red marble. How many distinguishable marble distributions are possible after the process is completed? [b]p5.[/b] In quadrilateral $PEAR$, $PE = 21$, $EA = 20$, $AR = 15$, $RE = 25$, and $AP = 29$. Find the area of the quadrilateral. [b]p6.[/b] Four congruent semicircles are drawn within the boundary of a square with side length $1$. The center of each semicircle is the midpoint of a side of the square. Each semicircle is tangent to two other semicircles. Region $R$ consists of points lying inside the square but outside of the semicircles. The area of $R$ can be written in the form $a - b\pi$, where $a$ and $b$ are positive rational numbers. Compute $a + b$. [b]p7.[/b] Let $x$ and $y$ be two numbers satisfying the relations $x\ge 0$, $y\ge 0$, and $3x + 5y = 7$. What is the maximum possible value of $9x^2 + 25y^2$? [b]p8.[/b] In the Senate office in Exie-land, there are $6$ distinguishable senators and $6$ distinguishable interns. Some senators and an equal number of interns will attend a convention. If at least one senator must attend, how many combinations of senators and interns can attend the convention? [b]p9.[/b] Evaluate $(1^2 - 3^2 + 5^2 - 7^2 + 9^2 - ... + 2009^2) -(2^2 - 4^2 + 6^2 - 8^2 + 10^2- ... + 2010^2)$. [b]p10.[/b] Segment $EA$ has length $1$. Region $R$ consists of points $P$ in the plane such that $\angle PEA \ge 120^o$ and $PE <\sqrt3$. If point $X$ is picked randomly from the region$ R$, the probability that $AX <\sqrt3$ can be written in the form $a - \frac{\sqrt{b}}{c\pi}$ , where $a$ is a rational number, $b$ and $c$ are positive integers, and $b$ is not divisible by the square of a prime. Find the ordered triple $(a, b, c)$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Estonia National Olympiad, 2

In a right triangle, the length of one side is a prime and the lengths of the other side and the hypotenuse are integral. The ratio of the triangle perimeter and the incircle diameter is also an integer. Find all possible side lengths of the triangle.

2001 Mongolian Mathematical Olympiad, Problem 2

In an acute-angled triangle $ABC$, $a,b,c$ are sides, $m_a,m_b,m_c$ the corresponding medians, $R$ the circumradius and $r$ the inradius. Prove the inequality $$\frac{a^2+b^2}{a+b}\cdot\frac{b^2+c^2}{b+c}\cdot\frac{a^2+c^2}{a+c}\ge16R^2r\frac{m_a}a\cdot\frac{m_b}b\cdot\frac{m_c}c.$$

2014 Mexico National Olympiad, 3

Let $\Gamma_1$ be a circle and $P$ a point outside of $\Gamma_1$. The tangents from $P$ to $\Gamma_1$ touch the circle at $A$ and $B$. Let $M$ be the midpoint of $PA$ and $\Gamma_2$ the circle through $P$, $A$ and $B$. Line $BM$ cuts $\Gamma_2$ at $C$, line $CA$ cuts $\Gamma_1$ at $D$, segment $DB$ cuts $\Gamma_2$ at $E$ and line $PE$ cuts $\Gamma_1$ at $F$, with $E$ in segment $PF$. Prove lines $AF$, $BP$, and $CE$ are concurrent.

2012 APMO, 4

Let $ ABC $ be an acute triangle. Denote by $ D $ the foot of the perpendicular line drawn from the point $ A $ to the side $ BC $, by $M$ the midpoint of $ BC $, and by $ H $ the orthocenter of $ ABC $. Let $ E $ be the point of intersection of the circumcircle $ \Gamma $ of the triangle $ ABC $ and the half line $ MH $, and $ F $ be the point of intersection (other than $E$) of the line $ ED $ and the circle $ \Gamma $. Prove that $ \tfrac{BF}{CF} = \tfrac{AB}{AC} $ must hold. (Here we denote $XY$ the length of the line segment $XY$.)