This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1994 Bulgaria National Olympiad, 1

Tags: circles , geometry
Two circles $k_1(O_1,R)$ and $k_2(O_2,r)$ are given in the plane such that $R \ge \sqrt2 r$ and $$O_1O_2 =\sqrt{R^2 +r^2 - r\sqrt{4R^2 +r^2}}.$$ Let $A$ be an arbitrary point on $k_1$. The tangents from $A$ to $k_2$ touch $k_2$ at $B$ and $C$ and intersect $k_1$ again at $D$ and $E$, respectively. Prove that $BD \cdot CE = r^2$

2011 Switzerland - Final Round, 8

Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic. [i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]

May Olympiad L1 - geometry, 1995.4

We have four white equilateral triangles of $3$ cm on each side and join them by their sides to obtain a triangular base pyramid. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?

2010 Princeton University Math Competition, 8

There is a point source of light in an empty universe. What is the minimum number of solid balls (of any size) one must place in space so that any light ray emanating from the light source intersects at least one ball?

2020 Yasinsky Geometry Olympiad, 2

On the midline $MN$ of the trapezoid $ABCD$ ($AD\parallel BC$) the points $F$ and $G$ are chosen so that $\angle ABF =\angle CBG$. Prove that then $\angle BAF = \angle DAG$. (Dmitry Prokopenko)

2021 Sharygin Geometry Olympiad, 3

Tags: geometry
Altitudes $AA_1,CC_1$ of acute-angles $ABC$ meet at point $H$ ; $B_0$ is the midpoint of $AC$. A line passing through $B$ and parallel to $AC$ meets $B_0A_1 , B_0C_1$ at points $A',C'$ respectively. Prove that $AA',CC'$ and $BH$ concur.

2019 JBMO Shortlist, G6

Tags: incenter , geometry
Let $ABC$ be a non-isosceles triangle with incenter $I$. Let $D$ be a point on the segment $BC$ such that the circumcircle of $BID$ intersects the segment $AB$ at $E\neq B$, and the circumcircle of $CID$ intersects the segment $AC$ at $F\neq C$. The circumcircle of $DEF$ intersects $AB$ and $AC$ at the second points $M$ and $N$ respectively. Let $P$ be the point of intersection of $IB$ and $DE$, and let $Q$ be the point of intersection of $IC$ and $DF$. Prove that the three lines $EN, FM$ and $PQ$ are parallel. [i]Proposed by Saudi Arabia[/i]

2025 Macedonian TST, Problem 1

Tags: geometry
On the sides of the triangle \(\triangle ABC\) lie the following points: \(K\) and \(L\) on \(AB\), \(M\) on \(BC\), and \(N\) on \(CA\). Let \[ P = AM\cap BN,\quad R = KM\cap LN,\quad S = KN\cap LM, \] and let the line \(CS\) meet \(AB\) at \(Q\). Prove that the points \(P\), \(Q\), and \(R\) are collinear.

2012 Kyrgyzstan National Olympiad, 3

Prove that if the diagonals of a convex quadrilateral are perpendicular, then the feet of perpendiculars dropped from the intersection point of diagonals on the sides of this quadrilateral lie on one circle. Is the converse true?

2017 Oral Moscow Geometry Olympiad, 1

On side $AB$ of triangle $ABC$ is marked point $K$ such that $AB = CK$. Points $N$ and $M$ are the midpoints of $AK$ and $BC$, respectively. The segments $NM$ and $CK$ intersect in point $P$. Prove that $KN = KP$.

1963 Poland - Second Round, 6

From the point $ S $ of space arise $ 3 $ half-lines: $ SA $, $ SB $ and $ SC $, none of which is perpendicular to both others. Through each of these rays, a plane is drawn perpendicular to the plane containing the other two rays. Prove that the drawn planes intersect along one line $ d $.

Ukrainian From Tasks to Tasks - geometry, 2015.10

Can the sum of the lengths of the median, angle bisector and altitude of a triangle be equal to its perimeter if a) these segments are drawn from three different vertices? b) these segments are drawn from one vertex?

2014 India IMO Training Camp, 3

In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.

2016 Harvard-MIT Mathematics Tournament, 7

Tags: geometry
For $i=0,1,\dots,5$ let $l_i$ be the ray on the Cartesian plane starting at the origin, an angle $\theta=i\frac{\pi}{3}$ counterclockwise from the positive $x$-axis. For each $i$, point $P_i$ is chosen uniformly at random from the intersection of $l_i$ with the unit disk. Consider the convex hull of the points $P_i$, which will (with probability 1) be a convex polygon with $n$ vertices for some $n$. What is the expected value of $n$?

2013 Costa Rica - Final Round, G2

Consider the triangle $ABC$. Let $P, Q$ inside the angle $A$ such that $\angle BAP=\angle CAQ$ and $PBQC$ is a parallelogram. Show that $\angle ABP=\angle ACP.$

2005 iTest, 18

If the four sides of a quadrilateral are $2, 3, 6$, and $x$, find the sum of all possible integral values for $x$.

2016 Mathematical Talent Reward Programme, MCQ: P 11

In rectangle $ABCD$, $AD=1$, $P$ is on $AB$ and $DB$ and $DP$ trisect $\angle ADC$. What is the perimeter $\triangle BDP$ [list=1] [*] $3+\frac{\sqrt{3}}{3}$ [*] $2+\frac{4\sqrt{3}}{3}$ [*] $2+2\sqrt{2}$ [*] $\frac{3+3\sqrt{5}}{2}$ [/list]

2021 Iranian Geometry Olympiad, 5

Tags: geometry
Given a triangle $ABC$ with incenter $I$. The incircle of triangle $ABC$ is tangent to $BC$ at $D$. Let $P$ and $Q$ be points on the side BC such that $\angle PAB = \angle BCA$ and $\angle QAC = \angle ABC$, respectively. Let $K$ and $L$ be the incenter of triangles $ABP$ and $ACQ$, respectively. Prove that $AD$ is the Euler line of triangle $IKL$. [i]Proposed by Le Viet An, Vietnam[/i]

2008 Mongolia Team Selection Test, 2

The quadrilateral $ ABCD$ inscribed in a circle wich has diameter $ BD$. Let $ A',B'$ are symmetric to $ A,B$ with respect to the line $ BD$ and $ AC$ respectively. If $ A'C \cap BD \equal{} P$ and $ AC\cap B'D \equal{} Q$ then prove that $ PQ \perp AC$

May Olympiad L1 - geometry, 2015.3

Tags: geometry
In the quadrilateral $ABCD$, we have $\angle C$ is triple of $\angle A$, let $P$ be a point in the side $AB$ such that $\angle DPA = 90º$ and let $Q$ be a point in the segment $DA$ where $\angle BQA = 90º$ the segments $DP$ and $CQ$ intersects in $O$ such that $BO = CO = DO$, find $\angle A$ and $\angle C$.

2013 NIMO Problems, 13

In trapezoid $ABCD$, $AD \parallel BC$ and $\angle ABC + \angle CDA = 270^{\circ}$. Compute $AB^2$ given that $AB \cdot \tan(\angle BCD) = 20$ and $CD = 13$. [i]Proposed by Lewis Chen[/i]

1986 French Mathematical Olympiad, Problem 2

Points $A,B,C$, and $M$ are given in the plane. (a) Let $D$ be the point in the plane such that $DA\le CA$ and $DB\le CB$. Prove that there exists point $N$ satisfying $NA\le MA,NB\le MB$, and $ND\le MC$. (b) Let $A',B',C'$ be the points in the plane such that $A'B'\le AB,A'C'\le AC,B'C'\le BC$. Does there exist a point $M'$ which satisfies the inequalities $M'A'\le MA,M'B'\le MB,M'C'\le MC$?

2014 Contests, 3

Let $ABCDEF$ be a convex hexagon. In the hexagon there is a point $K$, such that $ABCK,DEFK$ are both parallelograms. Prove that the three lines connecting $A,B,C$ to the midpoints of segments $CE,DF,EA$ meet at one point.

VI Soros Olympiad 1999 - 2000 (Russia), 10.4

Prove that the inequality $ r^2+r_a^2+r_b^2+ r_c^2 \ge 2S$ holds for an arbitrary triangle, where $r$ is the radius of the circle inscribed in the triangle, $r_a$, $r_b$, $r_c$ are the radii of its three excribed circles, $S$ is the area of the triangle.

Novosibirsk Oral Geo Oly VIII, 2016.6

An arbitrary point $M$ inside an equilateral triangle $ABC$ was connected to vertices. Prove that on each side the triangle can be selected one point at a time so that the distances between them would be equal to $AM, BM, CM$.