Found problems: 25757
2004 All-Russian Olympiad Regional Round, 8.6
Let $ABCD$ be a quadrilateral with parallel sides $AD$ and $BC$, $M$ and $N$ are the midpoints of its sides $AB$ and $CD$, respectively. The straight line $MN$ bisects the segment connecting the centers of the circumcircles of triangles $ABC$ and $ADC$. Prove that $ABCD$ is a parallelogram.
2016 Indonesia TST, 1
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.
1949 Moscow Mathematical Olympiad, 169
Construct a convex polyhedron of equal “bricks” shown in Figure.
[img]https://cdn.artofproblemsolving.com/attachments/6/6/75681a90478f978665b6874d0c0c9441ea3bd2.gif[/img]
1995 IMO Shortlist, 3
Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.
2019 Caucasus Mathematical Olympiad, 3
Points $A'$ and $B'$ lie inside the parallelogram $ABCD$ and points $C'$ and $D'$ lie outside of it, so that all sides of 8-gon $AA'BB'CC'DD'$ are equal. Prove that $A'$, $B'$, $C'$, $D'$ are concyclic.
2002 AMC 10, 5
Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region.
[asy]unitsize(.3cm);
defaultpen(linewidth(.8pt));
path c=Circle((0,2),1);
filldraw(Circle((0,0),3),grey,black);
filldraw(Circle((0,0),1),white,black);
filldraw(c,white,black);
filldraw(rotate(60)*c,white,black);
filldraw(rotate(120)*c,white,black);
filldraw(rotate(180)*c,white,black);
filldraw(rotate(240)*c,white,black);
filldraw(rotate(300)*c,white,black);[/asy]$ \textbf{(A)}\ \pi \qquad \textbf{(B)}\ 1.5\pi \qquad \textbf{(C)}\ 2\pi \qquad \textbf{(D)}\ 3\pi \qquad \textbf{(E)}\ 3.5\pi$
2010 IMO Shortlist, 7
Three circular arcs $\gamma_1, \gamma_2,$ and $\gamma_3$ connect the points $A$ and $C.$ These arcs lie in the same half-plane defined by line $AC$ in such a way that arc $\gamma_2$ lies between the arcs $\gamma_1$ and $\gamma_3.$ Point $B$ lies on the segment $AC.$ Let $h_1, h_2$, and $h_3$ be three rays starting at $B,$ lying in the same half-plane, $h_2$ being between $h_1$ and $h_3.$ For $i, j = 1, 2, 3,$ denote by $V_{ij}$ the point of intersection of $h_i$ and $\gamma_j$ (see the Figure below). Denote by $\widehat{V_{ij}V_{kj}}\widehat{V_{kl}V_{il}}$ the curved quadrilateral, whose sides are the segments $V_{ij}V_{il},$ $V_{kj}V_{kl}$ and arcs $V_{ij}V_{kj}$ and $V_{il}V_{kl}.$ We say that this quadrilateral is $circumscribed$ if there exists a circle touching these two segments and two arcs. Prove that if the curved quadrilaterals $\widehat{V_{11}V_{21}}\widehat{V_{22}V_{12}}, \widehat{V_{12}V_{22}}\widehat{V_{23}V_{13}},\widehat{V_{21}V_{31}}\widehat{V_{32}V_{22}}$ are circumscribed, then the curved quadrilateral $\widehat{V_{22}V_{32}}\widehat{V_{33}V_{23}}$ is circumscribed, too.
[i]Proposed by Géza Kós, Hungary[/i]
[asy]
pathpen=black;
size(400);
pair A=(0,0), B=(4,0), C=(10,0);
draw(L(A,C,0.3));
MP("A",A); MP("B",B); MP("C",C);
pair X=(5,-7);
path G1=D(arc(X,C,A));
pair Y=(5,7), Z=(9,6);
draw(Z--B--Y);
struct T {pair C;real r;};
T f(pair X, pair B, pair Y, pair Z)
{
pair S=unit(Y-B)+unit(Z-B);
real s=abs(sin(angle((Y-B)/(Z-B))/2));
real t=10, r=abs(X-A);
pair Q;
for(int k=0;k<30;++k)
{
Q=B+t*S;
t-=(abs(X-Q)-r)/abs(S)-s*t;
}
T T=new T;
T.C=Q; T.r=s*t*abs(S);
return T;
}
void g(pair Q, real r)
{
real t=0;
for(int k=0;k<30;++k)
{
X=(5,t);
t+=(abs(X-Q)+r-abs(X-A));
}
}
pair Z1=(1.07,6);
draw(B--Z1);
T T=f(X,B,Y,Z1);
draw(CR(T.C,T.r));
T T=f(X,B,Y,Z);
draw(CR(T.C,T.r));
g(T.C,T.r);
path G2=D(arc(X,C,A));
T T=f(X,B,Y,Z1);
draw(CR(T.C,T.r));
T=f(X,B,Y,Z);
draw(CR(T.C,T.r));
g(T.C,T.r);
path G3=D(arc(X,C,A));
pen p=black+fontsize(8);
MC("\gamma_1",G1,0.85,p);
MC("\gamma_2",G2,0.85,NNW,p);
MC("\gamma_3",G3,0.85,WNW,p);
MC("h_1",B--Z1,0.95,E,p);
MC("h_2",B--Y,0.95,E,p);
MC("h_3",B--Z,0.95,E,p);
path[] G={G1,G2,G3};
path[] H={B--Z1,B--Y,B--Z};
pair[][] al={{S+SSW,S+SSW,3*S},{SE,NE,NW},{2*SSE,2*SSE,2*E}};
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
MP("V_{"+string(i+1)+string(j+1)+"}",IP(H[i],G[j]),al[i][j],fontsize(8));[/asy]
2018 Irish Math Olympiad, 8
Let $M$ be the midpoint of side $BC$ of an equilateral triangle $ABC$. The point $D$ is on $CA$ extended such that $A$ is between $D$ and $C$. The point $E$ is on $AB$ extended such that $B$ is between $A$ and $E$, and $|MD| = |ME|$. The point $F$ is the intersection of $MD$ and $AB$. Prove that $\angle BFM = \angle BME$.
2014 IMO Shortlist, G1
Let $P$ and $Q$ be on segment $BC$ of an acute triangle $ABC$ such that $\angle PAB=\angle BCA$ and $\angle CAQ=\angle ABC$. Let $M$ and $N$ be the points on $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$ and $Q$ is the midpoint of $AN$. Prove that the intersection of $BM$ and $CN$ is on the circumference of triangle $ABC$.
[i]Proposed by Giorgi Arabidze, Georgia.[/i]
1971 IMO, 2
Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.
2006 Tournament of Towns, 6
Let us call a pentagon curved, if all its sides are arcs of some circles. Are there exist a curved pentagon $P$ and a point $A$ on its boundary so that any straight line passing through $A$ divides perimeter of $P$ into two parts of the same length?
[i](7 points)[/i]
2005 District Olympiad, 2
Let $ABC$ be a triangle inscribed in a circle of center $O$ and radius $R$. Let $I$ be the incenter of $ABC$, and let $r$ be the inradius of the same triangle, $O\neq I$, and let $G$ be its centroid. Prove that $IG\perp BC$ if and only if $b=c$ or $b+c=3a$.
1981 IMO Shortlist, 15
Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]
2002 Junior Balkan Team Selection Tests - Moldova, 3
Let $ABC$ be a an acute triangle. Points $A_1, B_1$ and $C_1$ are respectively the projections of the vertices $A, B$ and $C$ on the opposite sides of the triangle, the point $H$ is the orthocenter of the triangle, and the point $P$ is the middle of the segment $[AH]$. The lines $BH$ and $A_1C_1$, $P B_1$ and $AB$ intersect respectively at the points $M$ and $N$. Prove that the lines $MN$ and $BC$ are perpendicular.
2005 Tournament of Towns, 4
$M$ and $N$ are the midpoints of sides $BC$ and $AD$, respectively, of a square $ABCD$. $K$ is an arbitrary point on the extension of the diagonal $AC$ beyond $A$. The segment $KM$ intersects the side $AB$ at some point $L$. Prove that $\angle KNA = \angle LNA$.
[i](5 points)[/i]
2013 Stanford Mathematics Tournament, 19
A triangle with side lengths $2$ and $3$ has an area of $3$. Compute the third side length of the triangle.
2012 Romanian Master of Mathematics, 2
Given a non-isosceles triangle $ABC$, let $D,E$, and $F$ denote the midpoints of the sides $BC,CA$, and $AB$ respectively. The circle $BCF$ and the line $BE$ meet again at $P$, and the circle $ABE$ and the line $AD$ meet again at $Q$. Finally, the lines $DP$ and $FQ$ meet at $R$. Prove that the centroid $G$ of the triangle $ABC$ lies on the circle $PQR$.
[i](United Kingdom) David Monk[/i]
2015 Korea Junior Math Olympiad, 5
Let $I$ be the incenter of an acute triangle $\triangle ABC$, and let the incircle be $\Gamma$.
Let the circumcircle of $\triangle IBC$ hit $\Gamma$ at $D, E$, where $D$ is closer to $B$ and $E$ is closer to $C$.
Let $\Gamma \cap BE = K (\not= E)$, $CD \cap BI = T$, and $CD \cap \Gamma = L (\not= D)$.
Let the line passing $T$ and perpendicular to $BI$ meet $\Gamma$ at $P$, where $P$ is inside $\triangle IBC$.
Prove that the tangent to $\Gamma$ at $P$, $KL$, $BI$ are concurrent.
2020 CCA Math Bonanza, TB3
Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $CA=15$. The incircle of $ABC$ meets $BC$ at $D$. Line $AD$ meets the circle through $B$, $D$, and the reflection of $C$ over $AD$ at a point $P\neq D$. Compute $AP$.
[i]2020 CCA Math Bonanza Tiebreaker Round #4[/i]
2023 Bulgaria National Olympiad, 2
Let $ABC$ be an acute triangle and $A_{1}, B_{1}, C_{1}$ be the touchpoints of the excircles with the segments $BC, CA, AB$ respectively. Let $O_{A}, O_{B}, O_{C}$ be the circumcenters of $\triangle AB_{1}C_{1}, \triangle BC_{1}A_{1}, \triangle CA_{1}B_{1}$ respectively. Prove that the lines through $O_{A}, O_{B}, O_{C}$ respectively parallel to the internal angle bisectors of $\angle A,\angle B, \angle C$ are concurrent.
2020/2021 Tournament of Towns, P1
[list=a]
[*]A convex pentagon is partitioned into three triangles by nonintersecting diagonals. Is it possible for centroids of these triangles to lie on a common straight line?
[*]The same question for a non-convex pentagon.
[/list]
[i]Alexandr Gribalko[/i]
2012-2013 SDML (Middle School), 6
How many non-congruent scalene triangles with perimeter $21$ have integer side lengths that form an arithmetic sequence? (In an arithmetic sequence, successive terms differ by the same amount.)
$\text{(A) }0\qquad\text{(B) }1\qquad\text{(C) }3\qquad\text{(D) }4\qquad\text{(E) }6$
2004 AIME Problems, 14
A unicorn is tethered by a 20-foot silver rope to the base of a magician's cylindrical tower whose radius is 8 feet. The rope is attached to the tower at ground level and to the unicorn at a height of 4 feet. The unicorn has pulled the rope taut, the end of the rope is 4 feet from the nearest point on the tower, and the length of the rope that is touching the tower is $\frac{a-\sqrt{b}}c$ feet, where $a, b,$ and $c$ are positive integers, and $c$ is prime. Find $a+b+c$.
2002 Iran MO (3rd Round), 5
$\omega$ is circumcirlce of triangle $ABC$. We draw a line parallel to $BC$ that intersects $AB,AC$ at $E,F$ and intersects $\omega$ at $U,V$. Assume that $M$ is midpoint of $BC$. Let $\omega'$ be circumcircle of $UMV$. We know that $R(ABC)=R(UMV)$. $ME$ and $\omega'$ intersect at $T$, and $FT$ intersects $\omega'$ at $S$. Prove that $EF$ is tangent to circumcircle of $MCS$.
1994 IMO Shortlist, 2
$ ABCD$ is a quadrilateral with $ BC$ parallel to $ AD$. $ M$ is the midpoint of $ CD$, $ P$ is the midpoint of $ MA$ and $ Q$ is the midpoint of $ MB$. The lines $ DP$ and $ CQ$ meet at $ N$. Prove that $ N$ is inside the quadrilateral $ ABCD$.