This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2016 Costa Rica - Final Round, G3

Let $\vartriangle ABC$ be acute, with incircle $\Gamma$ and incenter $ I$. $\Gamma$ touches sides $AB$, $BC$ and $AC$ at $Z$, $X$ and $Y$, respectively. Let $D$ be the intersection of $XZ$ with $CI$ and $L$ the intersection of $BI$ with $XY$. Suppose $D$ and $L$ are outside of $\vartriangle ABC$. Prove that $A$, $D$, $Z$, $I$, $Y$, and $ L$ lie on a circle.

Mid-Michigan MO, Grades 5-6, 2010

[b]p1.[/b] Ben and his dog are walking on a path around a lake. The path is a loop $500$ meters around. Suddenly the dog runs away with velocity $10$ km/hour. Ben runs after it with velocity $8$ km/hour. At the moment when the dog is $250$ meters ahead of him, Ben turns around and runs at the same speed in the opposite direction until he meets the dog. For how many minutes does Ben run? [b]p2.[/b] The six interior angles in two triangles are measured. One triangle is obtuse (i.e. has an angle larger than $90^o$) and the other is acute (all angles less than $90^o$). Four angles measure $120^o$, $80^o$, $55^o$ and $10^o$. What is the measure of the smallest angle of the acute triangle? [b]p3.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region? [img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img] [b]p4.[/b] Two three-digit whole numbers are called relatives if they are not the same, but are written using the same triple of digits. For instance, $244$ and $424$ are relatives. What is the minimal number of relatives that a three-digit whole number can have if the sum of its digits is $10$? [b]p5.[/b] Three girls, Ann, Kelly, and Kathy came to a birthday party. One of the girls wore a red dress, another wore a blue dress, and the last wore a white dress. When asked the next day, one girl said that Kelly wore a red dress, another said that Ann did not wear a red dress, the last said that Kathy did not wear a blue dress. One of the girls was truthful, while the other two lied. Which statement was true? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 AMC 10, 11

The numbers from $ 1$ to $ 8$ are placed at the vertices of a cube in such a manner that the sum of the four numbers on each face is the same. What is this common sum? $ \textbf{(A)}\ 14 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 20 \qquad \textbf{(E)}\ 24$

1995 Singapore MO Open, 3

Let $P$ be a point inside $\vartriangle ABC$. Let $D, E, F$ be the feet of the perpendiculars from $P$ to the lines $BC, CA$ and $AB$, respectively (see Fig. ). Show that (i) $EF = AP \sin A$, (ii) $PA+ PB + PC \ge 2(PE+ PD+ PF)$ [img]https://cdn.artofproblemsolving.com/attachments/d/f/f37d8764fc7d99c2c3f4d16f66223ef39dfd09.png[/img]

2019 Israel Olympic Revenge, P3

Let $ABCD$ be a circumscribed quadrilateral, assume $ABCD$ is not a kite. Denote the circumcenters of triangle $ABC,BCD,CDA,DAB$ by $O_D,O_A,O_B,O_C$ respectively. a. Prove that $O_AO_BO_CO_D$ is circumscribed. b. Let the angle bisector of $\angle BAD$ intersect the angle bisector of $\angle O_BO_AO_D$ in $X$. Similarly define the points $Y,Z,W$. Denote the incenters of $ABCD, O_AO_BO_CO_D$ by $I,J$ respectively. Express the angles $\angle ZYJ,\angle XYI$ in terms of angles of quadrilateral $ABCD$.

2016 PUMaC Team, 1

Tags: geometry
Quadrilateral $ABCD$ has integer side lengths, and angles $ABC, ACD$, and $BAD$ are right angles. Compute the smallest possible value of $AD$.

1994 All-Russian Olympiad Regional Round, 10.7

In a convex pentagon $ ABCDE$ side $ AB$ is perpendicular to $ CD$ and side $ BC$ is perpendicular to $ DE$. Prove that if $ AB \equal{} AE \equal{} ED \equal{} 1$, then $ BC \plus{} CD < 1$.

STEMS 2022 Math Cat A Qualifier Round, 4

Tags: geometry
Given $\triangle ABC$ with $\angle A = 15^{\circ}$, let $M$ be midpoint of $BC$ and let $E$ and $F$ be points on ray $BA$ and $CA$ respectively such that $BE = BM = CF$. Let $R_1$ be the radius of $(MEF)$ and $R_{2}$ be radius of $(AEF)$. If $\frac{R_1^2}{R_2^2}=a-\sqrt{b+\sqrt{c}}$ where $a,b,c$ are integers. Find $a^{b^{c}}$

1989 IMO Shortlist, 8

Let $ R$ be a rectangle that is the union of a finite number of rectangles $ R_i,$ $ 1 \leq i \leq n,$ satisfying the following conditions: [b](i)[/b] The sides of every rectangle $ R_i$ are parallel to the sides of $ R.$ [b](ii)[/b] The interiors of any two different rectangles $ R_i$ are disjoint. [b](iii)[/b] Each rectangle $ R_i$ has at least one side of integral length. Prove that $ R$ has at least one side of integral length. [i]Variant:[/i] Same problem but with rectangular parallelepipeds having at least one integral side.

2013 Princeton University Math Competition, 5

Suppose you have a sphere tangent to the $xy$-plane with its center having positive $z$-coordinate. If it is projected from a point $P=(0,b,a)$ to the $xy$-plane, it gives the conic section $y=x^2$. If we write $a=\tfrac pq$ where $p,q$ are integers, find $p+q$.

1950 Polish MO Finals, 4

Someone wants to unscrew a square nut with side $a$, with a wrench whose hole has the form of a regular hexagon with side $b$. What condition should the lengths $a$ and $b$ meet to make this possible?

2009 Peru IMO TST, 5

Tags: geometry
Let $\mathcal{C}$ be the circumference inscribed in the triangle $ABC,$ which is tangent to sides $BC, AC, AB$ at the points $A' , B' , C' ,$ respectively. The distinct points $K$ and $L$ are taken on $\mathcal{C}$ such that $$\angle AKB'+\angle BKA' =\angle ALB'+\angle BLA'=180^{\circ}.$$ Prove that the points $A', B', C'$ are equidistant from the line $KL.$

2002 Bundeswettbewerb Mathematik, 4

Tags: geometry
Consider a $12$-gon with sidelengths $1$, $2$, $3$, $4$, ..., $12$. Prove that there are three consecutive sides in this $12$-gon, whose lengths have a sum $> 20$.

Kyiv City MO Juniors Round2 2010+ geometry, 2021.9.2

In an acute triangle $AB$ the heights $ BE$ and $CF$ intersect at the orthocenter $H$, and $M$ is the midpoint of $BC$. The line $EF$ intersects the lines $MH$ and $BC$ at the points $P$ and $T$ , respectively. $AP$ intersects the cirumcscribed circle of $\vartriangle ABC$ for second time at the point $Q$ . Prove that $\angle AQT= 90^o$. (Fedir Yudin)

2022 Sharygin Geometry Olympiad, 10.2

Tags: geometry
Let $ABCD$ be a convex quadrilateral. The common external tangents to circles $(ABC)$ and $(ACD)$ meet at point $E$, the common external tangents to circles $(ABD)$ and $(BCD)$ meet at point $F$. Let $F$ lie on $AC$, prove that $E$ lies on $BD$.

2017 Austria Beginners' Competition, 2

Tags: geometry
. In the isosceles triangle $ABC$ with $AC = BC$ we denote by $D$ the foot of the altitude through $C$. The midpoint of $CD$ is denoted by $M$. The line $BM$ intersects $AC$ in $E$. Prove that the length of $AC$ is three times that of $CE$.

1986 IMO Longlists, 8

A tetrahedron $ABCD$ is given such that $AD = BC = a; AC = BD = b; AB\cdot CD = c^2$. Let $f(P) = AP + BP + CP + DP$, where $P$ is an arbitrary point in space. Compute the least value of $f(P).$

2023 IMO, 2

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$.

Kyiv City MO Seniors 2003+ geometry, 2013.11.3

The segment $AB$ is the diameter of the circle. The points $M$ and $C$ belong to this circle and are located in different half-planes relative to the line $AB$. From the point $M$ the perpendiculars $MN$ and $MK$ are drawn on the lines $AB$ and $AC$, respectively. Prove that the line $KN$ intersects the segment $CM$ in its midpoint. (Igor Nagel)

2025 Vietnam Team Selection Test, 2

Tags: geometry
Let $ABC$ be an acute, non-isosceles triangle with orthocenter $H$. Let $D, E, F$ be the reflections of $H$ over $BC, CA, AB$, respectively, and let $A', B', C'$ be the reflections of $A, B, C$ over $BC, CA, AB$, respectively. Let $S$ be the circumcenter of triangle $A'B'C'$, and let $H'$ be the orthocenter of triangle $DEF$. Define $J$ as the center of the circle passing through the three projections of $H$ onto the lines $B'C', C'A', A'B'$. Prove that $HJ$ is parallel to $H'S$.

2012 AMC 8, 17

A square with integer side length is cut into 10 squares, all of which have integer side length and at least 8 of which have area 1. What is the smallest possible value of the length of the side of the original square? $\textbf{(A)}\hspace{.05in}3 \qquad \textbf{(B)}\hspace{.05in}4 \qquad \textbf{(C)}\hspace{.05in}5 \qquad \textbf{(D)}\hspace{.05in}6 \qquad \textbf{(E)}\hspace{.05in}7 $

2021 CMIMC, 7

Tags: geometry
Let $P$ and $Q$ be fixed points in the Euclidean plane. Consider another point $O_0$. Define $O_{i+1}$ as the center of the unique circle passing through $O_i$, $P$ and $Q$. (Assume that $O_i,P,Q$ are never collinear.) How many possible positions of $O_0$ satisfy that $O_{2021}=O_{0}$? [i]Proposed by Fei Peng[/i]

2015 Spain Mathematical Olympiad, 2

In triangle $ABC$, let $A'$ is the symmetrical of $A$ with respect to the circumcenter $O$ of $ABC$. Prove that: [b]a)[/b] The sum of the squares of the tangents segments drawn from $A$ and $A'$ to the incircle of $ABC$ equals $$4R^2-4Rr-2r^2$$ where $R$ and $r$ are the radii of the circumscribed and inscribed circles of $ABC$ respectively. [b]b)[/b] The circle with center $A'$ and radius $A'I$ intersects the circumcircle of $ABC$ in a point $L$ such that $$AL=\sqrt{ AB.AC}$$ where $I$ is the centre of the inscribed circle of $ABC$.

Indonesia MO Shortlist - geometry, g10

It is known that circle $\Gamma_1(O_1)$ has center at $O_1$, circle $\Gamma_2(O_2)$ has center at $O_2$, and both intersect at points $C$ and $D$. It is also known that points $P$ and $Q$ lie on circles $\Gamma_1(O_1)$ and $\Gamma_2(O_2)$, respectively. ). A line $\ell$ passes through point $D$ and intersects $\Gamma_1(O_1)$ and $\Gamma_2(O_2)$ at points $A$ and $B$, respectively. The lines $PD$ and $AC$ meet at point $M$, and the lines $QD$ and $BC$ meet at point $N$. Let $O$ be center outer circle of triangle $ABC$. Prove that $OD$ is perpendicular to $MN$ if and only if a circle can be found which passes through the points $P, Q, M$ and $N$.

2013 Saudi Arabia GMO TST, 2

Find all values of $n$ for which there exists a convex cyclic non-regular polygon with $n$ vertices such that the measures of all its internal angles are equal.