Found problems: 25757
2007 Gheorghe Vranceanu, 2
In the Euclidean plane, let be a point $ O $ and a finite set $ \mathcal{M} $ of points having at least two points.
Prove that there exists a proper subset of $ \mathcal{M}, $ namely $ \mathcal{M}_0, $ such that the following inequality is true:
$$ \sum_{P\in \mathcal{M}_0} OP\ge \frac{1}{4}\sum_{Q\in\mathcal{M}} OQ $$
2014 JBMO TST - Macedonia, 4
In a convex quadrilateral $ABCD$, $E$ is the intersection of $AB$ and $CD$, $F$ is the intersection of $AD$ and $BC$ and $G$ is the intersection of $AC$ and $EF$. Prove that the following two claims are equivalent:
$(i)$ $BD$ and $EF$ are parallel.
$(ii)$ $G$ is the midpoint of $EF$.
1964 Swedish Mathematical Competition, 1
Find the side lengths of the triangle $ABC$ with area $S$ and $\angle BAC = x$ such that the side $BC$ is as short as possible.
2017 Saudi Arabia JBMO TST, 7
Let $ABC$ be a triangle inscribed in the circle $(O)$, with orthocenter $H$. Let d be an arbitrary line which passes through $H$ and intersects $(O)$ at $P$ and $Q$. Draw diameter $AA'$ of circle $(O)$. Lines $A'P$ and $A'Q$ meet $BC$ at $K$ and $L$, respectively. Prove that $O, K, L$ and $A'$ are concyclic.
2018 Thailand TSTST, 3
Circles $O_1, O_2$ intersects at $A, B$. The circumcircle of $O_1BO_2$ intersects $O_1, O_2$ and line $AB$ at $R, S, T$ respectively. Prove that $TR = TS$
2015 IMO Shortlist, G6
Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma $ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order.
Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other.
Proposed by Ukraine
2002 China Team Selection Test, 2
$ \odot O_1$ and $ \odot O_2$ meet at points $ P$ and $ Q$. The circle through $ P$, $ O_1$ and $ O_2$ meets $ \odot O_1$ and $ \odot O_2$ at points $ A$ and $ B$. Prove that the distance from $ Q$ to the lines $ PA$, $ PB$ and $ AB$ are equal.
(Prove the following three cases: $ O_1$ and $ O_2$ are in the common space of $ \odot O_1$ and $ \odot O_2$; $ O_1$ and $ O_2$ are out of the common space of $ \odot O_1$ and $ \odot O_2$; $ O_1$ is in the common space of $ \odot O_1$ and $ \odot O_2$, $ O_2$ is out of the common space of $ \odot O_1$ and $ \odot O_2$.
2005 Cono Sur Olympiad, 2
Let $ABC$ be an acute-angled triangle and let $AN$, $BM$ and $CP$ the altitudes with respect to the sides $BC$, $CA$ and $AB$, respectively. Let $R$, $S$ be the pojections of $N$ on the sides $AB$, $CA$, respectively, and let $Q$, $W$ be the projections of $N$ on the altitudes $BM$ and $CP$, respectively.
(a) Show that $R$, $Q$, $W$, $S$ are collinear.
(b) Show that $MP=RS-QW$.
1979 Swedish Mathematical Competition, 6
Find the sharpest inequalities of the form $a\cdot AB < AG < b\cdot AB$ and $c\cdot AB < BG < d\cdot AB$ for all triangles $ABC$ with centroid $G$ such that $GA > GB > GC$.
2006 Hong Kong TST., 5
Given finitely many points in a plane, it is known that the area of the triangle formed by any three points of the set is less than 1. Show that all points of the set lie inside or on boundary of a triangle with area less than 4.
2023 Switzerland Team Selection Test, 4
Let $ABC$ and $AMN$ be two similar, non-overlapping triangles with the same orientation,
such that $AB=AC$ and $AM=AN$. Let $O$ be the circumcentre of the triangle $MAB$. Prove that the points $O, C, N$ and $A$ lie on a circle if and only if the triangle $ABC$ is equilateral.
2009 AMC 12/AHSME, 20
Convex quadrilateral $ ABCD$ has $ AB\equal{}9$ and $ CD\equal{}12$. Diagonals $ AC$ and $ BD$ intersect at $ E$, $ AC\equal{}14$, and $ \triangle AED$ and $ \triangle BEC$ have equal areas. What is $ AE$?
$ \textbf{(A)}\ \frac{9}{2}\qquad \textbf{(B)}\ \frac{50}{11}\qquad \textbf{(C)}\ \frac{21}{4}\qquad \textbf{(D)}\ \frac{17}{3}\qquad \textbf{(E)}\ 6$
2012 AMC 10, 14
Two equilateral triangles are contained in a square whose side length is $2\sqrt3$. The bases of these triangles are the opposite sides of the square, and their intersection is a rhombus. What is the area of the rhombus?
$ \textbf{(A)}\ \frac{3}{2}\qquad\textbf{(B)}\ \sqrt3\qquad\textbf{(C)}\ 2\sqrt2-1\qquad\textbf{(D)}\ 8\sqrt3-12\qquad\textbf{(E)}\ \frac{4\sqrt3}{3}$
2015 HMNT, 10-18
10) Call a string of letters $S$ an [i]almost-palindrome[/i] if $S$ and the reverse of $S$ differ in exactly $2$ places. Find the number of ways to order the letters in $HMMTTHEMETEAM$ to get an almost-palindrome.
11) Find all integers $n$, not necessarily positive, for which there exist positive integers ${a,b,c}$ satisfying $a^n + b^n = c^n$.
12) Let $a$ and $b$ be positive real numbers. Determine the minimum possible value of $\sqrt{a^2 + b^2} + \sqrt{a^2 + (b-1)^2} + \sqrt{(a-1)^2 + b^2} + \sqrt{(a-1)^2 + (b-1)^2}$.
13) Consider a $4$ x $4$ grid of squares, each originally colored red. Every minute, Piet can jump on any of the squares, changing the color of it and any adjacent squares to blue (two squares are adjacent if they share a side). What is the minimum number of minutes it will take Piet to change the entire grid to blue?
14) Let $ABC$ be an acute triangle with orthocenter $H$. Let ${D,E}$ be the feet of the ${A,B}$-altitudes, respectively. Given that $\overline{AH} = 20$ and $\overline{HD} =16$ and $\overline{BE} = 56$, find the length of $\overline{BH}$.
15) Find the smallest positive integer $b$ such that $1111 _b$ ($1111$ in base $b$) is a perfect square. If no such $b$ exists, write "No Solution"
16) For how many triples $( {x,y,z} )$ of integers between $-10$ and $10$, inclusive, do there exist reals ${a,b,c}$ that satisfy
$ab = x$
$ac = y$
$bc = z$?
17) Unit squares $ABCD$ and $EFGH$ have centers $O_1$ and $O_2$, respectively, and are originally oriented so that $B$ and $E$ are at the same position and $C$ and $H$ are at the same position. The squares then rotate clockwise around their centers at a rate of one revolution per hour. After $5$ minutes, what is the area of the intersection of the two squares?
18) A function $f$ satisfies, for all
nonnegative integers $x$ and $y$,
$f(x,0) = f(0,x) = x$
If $x \ge y \ge 0$, $f(x,y)=f(x-y,y)+1$
If $y \ge x \ge 0$, $f(x,y) = f(x,y-x)+1$
Find the maximum value of $f$ over $0 \le x,y \le 100$.
1985 Czech And Slovak Olympiad IIIA, 4
Two straight lines $p, q$ are given in the plane and on the straight line $q$ there is a point $F$, $F \not\in p$. Determine the set of all points $X$ that can be obtained by this construction: In the plane we choose a point $S$ that lies neither on $p$ nor on $q$, and we construct a circle $k$ with center $S$ that is tangent to the line $p$. On the circle $k$ we choose a point $T$ such that so that $ST \parallel q$. If the line $FT$ intersects the line $p$ at the point $U$, $X$ is the intersection of the lines $SU$ and $q$
2024 Bulgarian Autumn Math Competition, 9.2
Let $ABC$ be an acute scalene triangle with altitudes $AE$ $(E \in BC)$ and $BD$ $(D \in AC)$. Point $M$ lies on $AC$, such that $AM = AE$ and $C,A$ and $M$ lie in this order. Point $L$ lies on $BC$, such that $BL=BD$ and $C,B$ and $L$ lie in this order. Let $P$ be the midpoint of $DE$. Prove that $EM,DL$ and the perpendicular from $P$ to $AB$ are concurrent.
1996 Greece Junior Math Olympiad, 2
In a triangle $ABC$ let $D,E,Z,H,G$ be the midpoints of $BC,AD,BD,ED,EZ$ respectively. Let $I$ be the intersection of $BE,AC$ and let $K$ be the intersection of $HG,AC$. Prove that:
a) $AK=3CK$
b) $HK=3HG$
c) $BE=3EI$
d) $(EGH)=\frac{1}{32}(ABC)$
Notation $(...)$ stands for area of $....$
2025 Israel TST, P1
Let \( \triangle ABC \) be an isosceles triangle with \( AB = AC \). Let \( D \) be a point on \( AC \). Let \( L \) be a point inside the triangle such that \( \angle CLD = 90^\circ \) and
\[
CL \cdot BD = BL \cdot CD.
\]
Prove that the circumcenter of triangle \( \triangle BDL \) lies on line \( AB \).
1966 IMO Longlists, 17
Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios.
[b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram.
[b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ?
(Consecutive vertices of the parallelograms are labelled in alphabetical order.
2011 Math Prize for Girls Olympiad, 2
Let $\triangle ABC$ be an equilateral triangle. If $0 < r < 1$, let $D_r$ be the point on $\overline{AB}$ such that $AD_r = r \cdot AB$, let $E_r$ be the point on $\overline{BC}$ such that $BE_r = r \cdot BC$, and let $P_r$ be the point where $\overline{AE_r}$ and $\overline{CD_r}$ intersect. Prove that the set of points $P_r$ (over all $0 < r < 1$) lie on a circle.
2001 Slovenia National Olympiad, Problem 3
Let $E$ and $F$ be points on the side $AB$ of a rectangle $ABCD$ such that $AE = EF$. The line through $E$ perpendicular to $AB$ intersects the diagonal $AC$ at $G$, and the segments $FD$ and $BG$ intersect at $H$. Prove that the areas of the triangles $FBH$ and $GHD$ are equal.
2011 Sharygin Geometry Olympiad, 14
In triangle $ABC$, the altitude and the median from vertex $A$ form (together with line $BC$) a triangle such that the bisectrix of angle $A$ is the median; the altitude and the median from vertex $B$ form (together with line AC) a triangle such that the bisectrix of angle $B$ is the bisectrix. Find the ratio of sides for triangle $ABC$.
2024 Princeton University Math Competition, A5 / B7
Let $\triangle ABC$ be a triangle such that the angle bisector of $\triangle BAC,$ the median from $B$ to side $AC,$ and the perpendicular bisector of $AB$ intersect at a single point $X.$ If $AX = 5$ and $AC = 12,$ compute $a+b$ where $BC^2=\tfrac{a}{b}$ and $a,b$ are coprime positive integers.
.
2018 Mexico National Olympiad, 1
Let $A$ and $B$ be two points on a line $\ell$, $M$ the midpoint of $AB$, and $X$ a point on segment $AB$ other than $M$. Let $\Omega$ be a semicircle with diameter $AB$. Consider a point $P$ on $\Omega$ and let $\Gamma$ be the circle through $P$ and $X$ that is tangent to $AB$. Let $Q$ be the second intersection point of $\Omega$ and $\Gamma$. The internal angle bisector of $\angle PXQ$ intersects $\Gamma$ at a point $R$. Let $Y$ be a point on $\ell$ such that $RY$ is perpendicular to $\ell$. Show that $MX > XY$
BIMO 2022, 2
Let $ABCD$ be a circumscribed quadrilateral with incircle $\gamma$. Let $AB\cap CD=E, AD\cap BC=F, AC\cap EF=K, BD\cap EF=L$. Let a circle with diameter $KL$ intersect $\gamma$ at one of the points $X$. Prove that $(EXF)$ is tangent to $\gamma$.