Found problems: 25757
2020 Tournament Of Towns, 5
Given are two circles which intersect at points $P$ and $Q$. Consider an arbitrary line $\ell$ through $Q$, let the second points of intersection of this line with the circles be $A$ and $B$ respectively. Let $C$ be the point of intersection of the tangents to the circles in those points. Let $D$ be the intersection of the line $AB$ and the bisector of the angle $CPQ$. Prove that all possible $D$ for any choice of $\ell$ lie on a single circle.
Alexey Zaslavsky
2021 Portugal MO, 2
Let $ABC$ be a triangle such that $AB = AC$. Let $D$ be a point in $[BC]$ and $E$ a point in $[AD]$ such that
$\angle BE D = \angle BAC = 2 \angle DEC$. Shows that $DB = 2CD$.
[img]https://cdn.artofproblemsolving.com/attachments/d/5/677e19d8e68a89134e17a4ab6051e41f283486.png[/img]
DMM Devil Rounds, 2017
[b]p1.[/b] Let $A = \{D,U,K,E\}$ and $B = \{M, A, T,H\}$. How many maps are there from $A$ to $B$?
[b]p2.[/b] The product of two positive integers $x$ and $y$ is equal to $3$ more than their sum. Find the sum of all possible $x$.
[b]p3.[/b] There is a bag with $1$ red ball and $1$ blue ball. Jung takes out a ball at random and replaces it with a red ball. Remy then draws a ball at random. Given that Remy drew a red ball, what is the probability that the ball Jung took was red?
[b]p4.[/b] Let $ABCDE$ be a regular pentagon and let $AD$ intersect $BE$ at $P$. Find $\angle APB$.
[b]p5.[/b] It is Justin and his $4\times 4\times 4$ cube again! Now he uses many colors to color all unit-cubes in a way such that two cubes on the same row or column must have different colors. What is the minimum number of colors that Justin needs in order to do so?
[b]p6.[/b] $f(x)$ is a polynomial of degree $3$ where $f(1) = f(2) = f(3) = 4$ and $f(-1) = 52$. Determine $f(0)$.
[b]p7.[/b] Mike and Cassie are partners for the Duke Problem Solving Team and they decide to meet between $1$ pm and $2$ pm. The one who arrives first will wait for the other for $10$ minutes, the lave. Assume they arrive at any time between $1$ pm and $2$ pm with uniform probability. Find the probability they meet.
[b]p8.[/b] The remainder of $2x^3 - 6x^2 + 3x + 5$ divided by $(x - 2)^2$ has the form $ax + b$. Find $ab$.
[b]p9.[/b] Find $m$ such that the decimal representation of m! ends with exactly $99$ zeros.
[b]p10.[/b] Let $1000 \le n = \overline{DUKE} \le 9999$. be a positive integer whose digits $\overline{DUKE}$ satisfy the divisibility condition: $$1111 | \left( \overline{DUKE} + \overline{DU} \times \overline{KE} \right)$$ Determine the smallest possible value of $n$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 May Olympiad, 3
Let $ABCDEFGHI$ be a regular polygon of $9$ sides. The segments $AE$ and $DF$ intersect at $P$. Prove that $PG$ and $AF$ are perpendicular.
2017 Sharygin Geometry Olympiad, 3
The angles $B$ and $C$ of an acute-angled triangle $ABC$ are greater than $60^\circ$. Points $P,Q$ are chosen on the sides $AB,AC$ respectively so that the points $A,P,Q$ are concyclic with the orthocenter $H$ of the triangle $ABC$. Point $K$ is the midpoint of $PQ$. Prove that $\angle BKC > 90^\circ$.
[i]Proposed by A. Mudgal[/i]
2024 Moldova EGMO TST, 5
$AD$ Is the angle bisector Of $\angle BAC$ Where $D$ lies on the The circumcircle of $\triangle ABC$. Show that $2AD>AB+AC$
1966 IMO Shortlist, 23
Three faces of a tetrahedron are right triangles, while the fourth is not an obtuse triangle.
[i](a) [/i]Prove that a necessary and sufficient condition for the fourth face to be a right triangle is that at some vertex exactly two angles are right.
[i](b)[/i] Prove that if all the faces are right triangles, then the volume of the tetrahedron equals one -sixth the product of the three smallest edges not belonging to the same face.
1987 IMO Longlists, 22
Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively.
[i]Proposed by United Kingdom.[/i]
2014 Sharygin Geometry Olympiad, 16
Given a triangle $ABC$ and an arbitrary point $D$.The lines passing through $D$ and perpendicular to segments $DA, DB, DC$ meet lines $BC, AC, AB$ at points $A_1, B_1, C_1$ respectively. Prove that the midpoints of segments $AA_1, BB_1, CC_1$ are collinear.
1985 IMO Longlists, 53
For each $P$ inside the triangle $ABC$, let $A(P), B(P)$, and $C(P)$ be the points of intersection of the lines $AP, BP$, and $CP$ with the sides opposite to $A, B$, and $C$, respectively. Determine $P$ in such a way that the area of the triangle $A(P)B(P)C(P)$ is as large as possible.
2010 Germany Team Selection Test, 1
In the plane we have points $P,Q,A,B,C$ such triangles $APQ,QBP$ and $PQC$ are similar accordantly (same direction). Then let $A'$ ($B',C'$ respectively) be the intersection of lines $BP$ and $CQ$ ($CP$ and $AQ;$ $AP$ and $BQ,$ respectively.) Show that the points $A,B,C,A',B',C'$ lie on a circle.
1959 IMO Shortlist, 6
Two planes, $P$ and $Q$, intersect along the line $p$. The point $A$ is given in the plane $P$, and the point $C$ in the plane $Q$; neither of these points lies on the straight line $p$. Construct an isosceles trapezoid $ABCD$ (with $AB \parallel CD$) in which a circle can be inscribed, and with vertices $B$ and $D$ lying in planes $P$ and $Q$ respectively.
1985 IMO Longlists, 57
[i]a)[/i] The solid $S$ is defined as the intersection of the six spheres with the six edges of a regular tetrahedron $T$, with edge length $1$, as diameters. Prove that $S$ contains two points at a distance $\frac{1}{\sqrt 6}.$
[i]b)[/i] Using the same assumptions in [i]a)[/i], prove that no pair of points in $S$ has a distance larger than $\frac{1}{\sqrt 6}.$
1998 IMO Shortlist, 2
Let $ABCD$ be a cyclic quadrilateral. Let $E$ and $F$ be variable points on the sides $AB$ and $CD$, respectively, such that $AE:EB=CF:FD$. Let $P$ be the point on the segment $EF$ such that $PE:PF=AB:CD$. Prove that the ratio between the areas of triangles $APD$ and $BPC$ does not depend on the choice of $E$ and $F$.
1997 AMC 12/AHSME, 2
The adjacent sides of the decagon shown meet at right angles. What is its perimeter?
[asy]defaultpen(linewidth(.8pt));
dotfactor=4;
dot(origin);dot((12,0));dot((12,1));dot((9,1));dot((9,7));dot((7,7));dot((7,10));dot((3,10));dot((3,8));dot((0,8));
draw(origin--(12,0)--(12,1)--(9,1)--(9,7)--(7,7)--(7,10)--(3,10)--(3,8)--(0,8)--cycle);
label("$8$",midpoint(origin--(0,8)),W);
label("$2$",midpoint((3,8)--(3,10)),W);
label("$12$",midpoint(origin--(12,0)),S);[/asy]$ \textbf{(A)}\ 22\qquad \textbf{(B)}\ 32\qquad \textbf{(C)}\ 34\qquad \textbf{(D)}\ 44\qquad \textbf{(E)}\ 50$
2005 JHMT, 5
Equilateral triangle $ABC$ has $AD = DB = FG = AE = EC = 4$ and $BF = GC = 2$. From $D$ and $G$ are drawn perpendiculars to $EF$ intersecting at $H$ and $I$, respectively. The three polygons $ECGI$, $FGI$, and $BFHD$ are rearranged to $EANL$, $MNK$, and $AMJD$ so that the rectangle $HLKJ$ is formed. Find its area.
[img]https://cdn.artofproblemsolving.com/attachments/d/4/7e6667f0f0544b6fbc860f8d86c8ceaaf85cc1.png[/img]
2007 iTest Tournament of Champions, 1
Find the smallest positive integer $n$ such that a cube with sides of length $n$ can be divided up into exactly $2007$ smaller cubes, each of whose sides is of integer length.
2002 AMC 8, 16
Right isosceles triangles are constructed on the sides of a 3-4-5 right triangle, as shown. A capital letter represents the area of each triangle. Which one of the following is true?
[asy]/* AMC8 2002 #16 Problem */
draw((0,0)--(4,0)--(4,3)--cycle);
draw((4,3)--(-4,4)--(0,0));
draw((-0.15,0.1)--(0,0.25)--(.15,0.1));
draw((0,0)--(4,-4)--(4,0));
draw((4,0.2)--(3.8,0.2)--(3.8,-0.2)--(4,-0.2));
draw((4,0)--(7,3)--(4,3));
draw((4,2.8)--(4.2,2.8)--(4.2,3));
label(scale(0.8)*"$Z$", (0, 3), S);
label(scale(0.8)*"$Y$", (3,-2));
label(scale(0.8)*"$X$", (5.5, 2.5));
label(scale(0.8)*"$W$", (2.6,1));
label(scale(0.65)*"5", (2,2));
label(scale(0.65)*"4", (2.3,-0.4));
label(scale(0.65)*"3", (4.3,1.5));[/asy]
$ \textbf{(A)}\ X\plus{}Z\equal{}W\plus{}Y \qquad \textbf{(B)}\ W\plus{}X\equal{}Z \qquad\textbf{(C)}\ 3X\plus{}4Y\equal{}5Z \qquad $
$\textbf{(D)}\ X\plus{}W\equal{}\frac{1}{2}(Y\plus{}Z) \qquad\textbf{(E)}\ X\plus{}Y\equal{}Z$
MMATHS Mathathon Rounds, 2017
[u]Round 5[/u]
[b]p13.[/b] Points $A, B, C$, and $D$ lie in a plane with $AB = 6$, $BC = 5$, and $CD = 5$, and $AB$ is perpendicular to $BC$. Point E lies on line $AD$ such that $D \ne E$, $AE = 3$ and $CE = 5$. Find $DE$.
[b]p14.[/b] How many ordered pairs of integers $(x,y)$ are solutions to $x^2y = 36 + y$?
[b]p15.[/b] Chicken nuggets come in boxes of two sizes, $a$ nuggets per box and $b$ nuggets per box. We know that $899$ nuggets is the largest number of nuggets we cannot obtain with some combination of $a$-sized boxes and $b$-sized boxes. How many different pairs $(a, b)$ are there with $a < b$?
[u]Round 6[/u]
[b]p16.[/b] You are playing a game with coins with your friends Alice and Bob. When all three of you flip your respective coins, the majority side wins. For example, if Alice, Bob, and you flip Heads, Tails, Heads in that order, then you win. If Alice, Bob, and you flip Heads, Heads, Tails in that order, then you lose. Notice that more than one person will “win.” Alice and Bob design their coins as follows: a value $p$ is chosen randomly and uniformly between $0$ and $1$. Alice then makes a biased coin that lands on heads with probability $p$, and Bob makes a biased coin that lands on heads with probability $1 -p$. You design your own biased coin to maximize your chance of winning without knowing $p$. What is the probability that you win?
[b]p17.[/b] There are $N$ distinct students, numbered from $1$ to $N$. Each student has exactly one hat: $y$ students have yellow hats, $b$ have blue hats, and $r$ have red hats, where $y + b + r = N$ and $y, b, r > 0$. The students stand in a line such that all the $r$ people with red hats stand in front of all the $b$ people with blue hats. Anyone wearing red is standing in front of everyone wearing blue. The $y$ people with yellow hats can stand anywhere in the line. The number of ways for the students to stand in a line is $2016$. What is $100y + 10b + r$?
[b]p18.[/b] Let P be a point in rectangle $ABCD$ such that $\angle APC = 135^o$ and $\angle BPD = 150^o$. Suppose furthermore that the distance from P to $AC$ is $18$. Find the distance from $P$ to $BD$.
[u]Round 7 [/u]
[b]p19.[/b] Let triangle $ABC$ be an isosceles triangle with $|AB| = |AC|$. Let $D$ and $E$ lie on $AB$ and $AC$, respectively. Suppose $|AD| = |BC| = |EC|$ and triangle $ADE$ is isosceles. Find the sum of all possible values of $\angle BAC$ in radians. Write your answer in the form $2 arcsin \left( \frac{a}{b}\right) + \frac{c}{d} \pi$, where $\frac{a}{b}$ and $\frac{c}{d}$ are in lowest terms, $-1 \le \frac{a}{b} \le 1$, and $-1 \le \frac{c}{d} \le 1$.
[b]p20.[/b] Kevin is playing a game in which he aims to maximize his score. In the $n^{th}$ round, for $n \ge 1$, a real number between $0$ and $\frac{1}{3^n}$ is randomly generated. At each round, Kevin can either choose to have the randomly generated number from that round as his score and end the game, or he can choose to pass on the number and continue to the next round. Once Kevin passes on a number, he CANNOT claim that number as his score. Kevin may continue playing for as many rounds as he wishes. If Kevin plays optimally, the expected value of his score is $a + b\sqrt{c}$ where $a, b$, and $c$ are integers and $c$ is positive and not divisible by any positive perfect square other than $1$. What is $100a + 10b + c$?
[b]p21.[/b] Lisa the ladybug (a dimensionless ladybug) lives on the coordinate plane. She begins at the origin and walks along the grid, at each step moving either right or up one unit. The path she takes ends up at $(2016, 2017)$. Define the “area” of a path as the area below the path and above the $x$-axis. The sum of areas over all paths that Lisa can take can be represented as as $a \cdot {{4033} \choose {2016}}$ . What is the remainder when $a$ is divided by $1000$?
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2782871p24446475]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Postal Coaching, 10
On the sides $AB$ and $BC$ of triangle $ABC$, points $K$ and $M$ are chosen such that the quadrilaterals $AKMC$ and $KBMN$ are cyclic , where $N = AM \cap CK$ . If these quads have the same circumradii, find $\angle ABC$
May Olympiad L2 - geometry, 1999.2
In a unit circle where $O$ is your circumcenter, let $A$ and $B$ points in the circle with $\angle BOA = 90$. In the arc $AB$(minor arc) we have the points $P$ and $Q$ such that $PQ$ is parallel to $AB$. Let $X$ and $Y$ be the points of intersections of the line $PQ$ with $OA$ and $OB$ respectively. Find the value of $PX^2 + PY^2$
2005 MOP Homework, 2
Let $I$ be the incenter of triangle $ABC$, and let $A_1$, $B_1$, and $C_1$ be arbitrary points lying on segments $AI$,$BI$, and $CI$, respectively. The perpendicular bisectors of segments $AA_1$, $BB_1$, and $CC_1$ form triangles $A_2B_2C_2$. Prove that the circumcenter of triangle $A_2B_2C_2$ coincides with the circumcenter of triangle $ABC$ if and only if $I$ is the orthocenter of triangle $A_1B_1C_1$.
1962 Bulgaria National Olympiad, Problem 3
It is given a cube with sidelength $a$. Find the surface of the intersection of the cube with a plane, perpendicular to one of its diagonals and whose distance from the centre of the cube is equal to $h$.
2023 Serbia National Math Olympiad, 6
Given is a triangle $ABC$ with incenter $I$ and circumcircle $\omega$. The incircle is tangent to $BC$ at $D$. The perpendicular at $I$ to $AI$ meets $AB, AC$ at $E, F$ and the circle $(AEF)$ meets $\omega$ and $AI$ at $G, H$. The tangent at $G$ to $\omega$ meets $BC$ at $J$ and $AJ$ meets $\omega$ at $K$. Prove that $(DJK)$ and $(GIH)$ are tangent to each other.
2022 Costa Rica - Final Round, 6
Consider $ABC$ with $AC > AB$ and incenter $I$. The midpoints of $\overline{BC}$ and $\overline{AC}$ are $M$ and $N$, respectively. If $\overline{AI}$ is perpendicular to $\overline{IN}$, then prove that $\overline{AI}$ is tangent to the circumscribed circle of $\vartriangle BMI$.